Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Effective Visualization Approaches For Ultra-High Dimensional Datasets, Gurminder Kaur Oct 2018

Effective Visualization Approaches For Ultra-High Dimensional Datasets, Gurminder Kaur

LSU Doctoral Dissertations

Multivariate informational data, which are abstract as well as complex, are becoming increasingly common in many areas such as scientific, medical, social, business, and so on. Displaying and analyzing large amounts of multivariate data with more than three variables of different types is quite challenging. Visualization of such multivariate data suffers from a high degree of clutter when the numbers of dimensions/variables and data observations become too large. We propose multiple approaches to effectively visualize large datasets of ultrahigh number of dimensions by generalizing two standard multivariate visualization methods, namely star plot and parallel coordinates plot. We refine three variants …


Bipartite Quantum Interactions: Entangling And Information Processing Abilities, Siddhartha Das Oct 2018

Bipartite Quantum Interactions: Entangling And Information Processing Abilities, Siddhartha Das

LSU Doctoral Dissertations

The aim of this thesis is to advance the theory behind quantum information processing tasks, by deriving fundamental limits on bipartite quantum interactions and dynamics. A bipartite quantum interaction corresponds to an underlying Hamiltonian that governs the physical transformation of a two-body open quantum system. Under such an interaction, the physical transformation of a bipartite quantum system is considered in the presence of a bath, which may be inaccessible to an observer. The goal is to determine entangling abilities of such arbitrary bipartite quantum interactions. Doing so provides fundamental limitations on information processing tasks, including entanglement distillation and secret key …


Development Of A Slab-Based Monte Carlo Proton Dose Algorithm With A Robust Material-Dependent Nuclear Halo Model, John Wesley Chapman Jr Jun 2018

Development Of A Slab-Based Monte Carlo Proton Dose Algorithm With A Robust Material-Dependent Nuclear Halo Model, John Wesley Chapman Jr

LSU Doctoral Dissertations

Pencil beam algorithms (PBAs) are often utilized for dose calculation in proton therapy treatment planning because they are fast and accurate under most conditions. However, as discussed in Chapman et al (2017), the accuracy of a PBA can be limited under certain conditions because of two major assumptions: (1) the central-axis semi-infinite slab approximation; and, (2) the lack of material dependence in the nuclear halo model. To address these limitations, we transported individual protons using a class II condensed history Monte Carlo and added a novel energy loss method that scaled the nuclear halo equation in water to arbitrary geometry. …


Entropic Bounds On Two-Way Assisted Secret-Key Agreement Capacities Of Quantum Channels, Noah Anthony Davis Apr 2018

Entropic Bounds On Two-Way Assisted Secret-Key Agreement Capacities Of Quantum Channels, Noah Anthony Davis

LSU Doctoral Dissertations

In order to efficiently put quantum technologies into action, we must know the characteristics of the underlying quantum systems and effects. An interesting example is the use of the secret-key-agreement capacity of a quantum channel as a guide and measure for the implementation of quantum key distribution (QKD) and distributed quantum computation. We define the communication task of establishing a secret key over a quantum channel subject to an energy constraint on the input state and while allowing for unlimited local operations and classical communication (LOCC) between a sender and receiver. We then use the energy-constrained squashed entanglement to bound …


An Optimizing Java Translation Framework For Automated Checkpointing And Strong Mobility, Arvind Kumar Saini Jan 2018

An Optimizing Java Translation Framework For Automated Checkpointing And Strong Mobility, Arvind Kumar Saini

LSU Doctoral Dissertations

Long-running programs, e.g., in high-performance computing, need to

write periodic checkpoints of their execution state to disk to allow

them to recover from node failure. Manually adding checkpointing code

to an application, however, is very tedious. The mechanisms needed

for writing the execution state of a program to disk and restoring it

are similar to those needed for migrating a running thread or a mobile

object. We have extended a source-to-source translation scheme that

allows the migration of mobile Java objects with running threads to

make it more general and allow it to be used for automated

checkpointing. Our translation …