Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Theses and Dissertations

Physics and Astronomy

Physics

Articles 1 - 21 of 21

Full-Text Articles in Physical Sciences and Mathematics

The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser Mar 2024

The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser

Electronic Theses and Dissertations

In this dissertation begin with an investigation of non-local spin transport in an amorphous germanium (a-Ge) sample via the inverse spin Hall effect (ISHE). In that study we show that commonly used techniques such as differential conductance and delta mode of a paired Keithley 6221/2182a for non-local resistance measurements can lead to false indicators of spin transport. Next, we turn out attention to a thickness dependent study in thermally-evaporated chromium (Cr) thin films on a bulk polycrystalline yttrium-iron-garnet (YIG) substrate. This project analyzed the spin transport in the Cr films versus thickness via the longitudinal spin Seebeck effect (LSSE). This …


Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale Mar 2024

Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale

Electronic Theses and Dissertations

Continuing technological advancements bring forth escalating challenges in global energy consumption and subsequent power dissipation, posing significant economic and environmental concerns. In response to these difficulties, the fields of thermoelectrics, spintronics, and spincaloritronics emerge as contemporary solutions, each presenting unique advantages. Thermoelectric devices, based on the Seebeck effect, other a passive, carbon-free energy generating solution from waste heat. Although current thermoelectric technology encounters hurdles in achieving optimal efficiencies without intricate designs or complex materials engineering, recently research into low-damping metallic ferromagnetic thin films have provided a new method to enhance spin wave lifetimes, thus contributing to thermoelectric voltage improvements. As …


Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui Nov 2023

Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui

Electronic Theses and Dissertations

Multidimensional coherent spectroscopy (MDCS) is a quickly growing field that has a lot of advantages over more conventional forms of spectroscopy. These advantages all come from the fact that MDCS allows us to get time resolved correlated emission and absorption spectra using very precisely chosen interactions between the density matrix and the excitation laser. MDCS spectra gives the researcher a lot of information that can be extracted purely through qualitative analysis. This is possible because state couplings are entirely separated on the spectra, and once we know how to read the data, we can see how carriers transport in the …


Thermal, Magnetic, And Electrical Properties Of Thin Films And Nanostructures: From Magnetic Insulators To Organic Thermoelectrics, Michael J. M. Roos Jun 2023

Thermal, Magnetic, And Electrical Properties Of Thin Films And Nanostructures: From Magnetic Insulators To Organic Thermoelectrics, Michael J. M. Roos

Electronic Theses and Dissertations

Modern fabrication and growth techniques allow for the development of increasingly smaller and more complex solid state structures, the characterization of which require highly specialized measurement platforms. In this dissertation I present the development of techniques and instrumentation used in magnetic, thermal, and electrical property measurements of thin films and nanostructures. The understanding of trapped-flux induced artifacts in SQUID magnetometry of large paramagnetic substrates allows for the resolution of increasingly small moments. Using these methods, the antiferromagnetic coupling of the interface between a Y3Fe5O12 film and Gd3Ga5O12substrate is quantitatively …


Compressible Hydrodynamics Of Few Body Optical Vortices, Jasmine M. Andersen Jan 2021

Compressible Hydrodynamics Of Few Body Optical Vortices, Jasmine M. Andersen

Electronic Theses and Dissertations

The ubiquity of vortices nearly rivals that of the innumerable fluids and spaces in which they live. Not only do they exist in systems such as superfluids, superconductors, optical fields, or cold atomic gases, for example, but they also exist in our atmospheres, oceans, and even in our veins. This makes understanding and accurately predicting the dynamics of vortices in various systems a relevant and meaningful endeavor.

From a typical hydrodynamic perspective, vortices move within a given fluid because of the background fluid density and phase gradients at the vortex location. However, we find that these gradients alone are insufficient …


Modeling Disorder In Proteins Yields Insights Into The Evolution Of Stability And Function, Jonathan Huihui Jan 2021

Modeling Disorder In Proteins Yields Insights Into The Evolution Of Stability And Function, Jonathan Huihui

Electronic Theses and Dissertations

The central dogma of molecular biology dictates that a DNA sequence codes for an RNA sequence, which in turn codes for a sequence of amino acids that comprises a protein. Proteins are responsible with performing myriad functions within living organisms and most proteins require a folded structure in order to perform their function. The protein's structure is the direct link from sequence to function. This is known as the sequence - structure - function paradigm. However, this does not mean that the unfolded state is unimportant. In order to properly model the stability of the folded state, one needs to …


Examining Artifacts Of The Watershed Segmentation, Emily Jo Armitage Jan 2020

Examining Artifacts Of The Watershed Segmentation, Emily Jo Armitage

Electronic Theses and Dissertations

The watershed segmentation is an algorithm used to systematically track cell intercalary behaviors during germ band extension of the Drosophila embryo. Neighboring cells share a contracting vertical interface, called a T1, which continues contracting to a single point, a T2, and extending in the horizontal direction to create what is called a T3 interface (Fig. 1). Additionally, higher order vertices called rosettes occur when five or more cells meet at a common vertex. Simulated T2 events demonstrate that cell angle and not noise level in the image contributes to the incorrect detection of artifactual T1s in more acute angled cells …


Quantification Of Dynamic Epithelial Sheet Architecture In Botryllus Schlosseri Using 2-D & 3-D Image Analysis, Roopa Madhu Jan 2020

Quantification Of Dynamic Epithelial Sheet Architecture In Botryllus Schlosseri Using 2-D & 3-D Image Analysis, Roopa Madhu

Electronic Theses and Dissertations

Epithelial tubules form critical structures in various body tissues; how- ever, since they are difficult to access experimentally, their architecture and dynamics are not well understood. Here we examine the dynamic remodeling of epithelial tubes in vivo using a novel and uniquely accessible model system: the extracorporeal vasculature of Botryllus schlosseri (sea squirt). In Botryllus, massive retraction of blood vessels can be triggered without loss of barrier function, through (i) disrupting collagen crosslinking in the basement membrane using β-aminopropionitrile (BAPN); or (ii) disrupting the integrin pathway through inhibition of focal adhesion kinase (FAK). We performed stereographic projections of 3-dimensional …


Gas Adsorption In Carbon Nanohorns: Equilibrium And Kinetics, Justin Matthew Petucci Jan 2020

Gas Adsorption In Carbon Nanohorns: Equilibrium And Kinetics, Justin Matthew Petucci

Electronic Theses and Dissertations

A study of gas adsorption has been carried out with the focus of better understanding the relationships between the individual properties of the adsorbent/adsorbate (e.g. material structure, interactions, gas size and shape, etc.) and the overall adsorptive properties of the combined system (e.g. capacity, binding strength, equilibration time, etc.) as a function of thermodynamical variables. This is useful from the perspective of a comprehensive and fundamental understanding as well as for practical applications. The equilibrium regime of adsorption on carbon nanostructure materials (nanohorns, nanotubes, and graphite) is investigated using molecular statics (MS) and grand canonical monte carlo (GCMC) methods for …


2d Confinement Of Thermal Gradients In Metallic Non-Local Spin Valves, Rachel K. Bennet Jan 2020

2d Confinement Of Thermal Gradients In Metallic Non-Local Spin Valves, Rachel K. Bennet

Electronic Theses and Dissertations

Non-local spin valves (NLSVs) are a valuable tool in the growing field of spintronics due to their unique ability to separate charge current from pure spin current. Their potential applications as read heads for hard-disk drives, as well as use as logic gates and other spin sensors, makes detailed understanding of their behavior under a wide range of operating conditions very important.

In this dissertation, I present results of extreme thermal engineering of the supporting substrate of NLSVs, which has a dramatic impact on the background signal of the device as well as contributions from thermal spin effects such as …


Multidimensional Spectroscopy Of Mixed-Cation Perovskite Thin Films, Geoffrey Michael Diederich Jan 2019

Multidimensional Spectroscopy Of Mixed-Cation Perovskite Thin Films, Geoffrey Michael Diederich

Electronic Theses and Dissertations

Metal halide perovskite (MHP) thin films are currently undergoing an intense re- search thrust due to the excellent performance of MHP based photovoltaic (PV) devices, which have the potential to revolutionize the worlds energy production via a unique combination of low-cost fabrication and high power conversion efficiency (PCE). However, the vast majority of research is currently aimed at incremental improvements in device PCE, resulting in a body of work without the foundational understanding of the charge-carrier dynamics of the system upon photoexcitation.

This thesis begins with the development of a phase-modulated multidimensional coherent spectroscopy (PM-MDCS) experiment. PM-MDCS is an ultrafast …


Quantitative Aspects Of Interface Remodeling During Germband Extension, Timothy E. Vanderleest Jan 2019

Quantitative Aspects Of Interface Remodeling During Germband Extension, Timothy E. Vanderleest

Electronic Theses and Dissertations

Oriented cell intercalation is an essential developmental process that shapes tissue morphologies through the directional insertion of cells between their neighbors. Intercalary behaviors in the early Drosophila embryo occur through a remodeling of cell topologies, with cells contracting shared AP interfaces to a single point, followed by newly juxtaposed DV cells constructing horizontally-oriented interfaces between them. Previous research has focused on properties of cell-cell interfaces, and led to a model in which actomyosin networks mediate higher line tensions at AP interfaces to direct contraction. However, the contribution of tricellular vertices to tissue elongation remains unclear. This study shows that cell …


Nanoscale Thermal Transport In Thermally Isolated Nanostructures, Brian G. Green Jan 2019

Nanoscale Thermal Transport In Thermally Isolated Nanostructures, Brian G. Green

Electronic Theses and Dissertations

Experiments with nanoscale structures, designed to measure some of their thermal and optical properties, are the subjects of this dissertation. We studied the transport of thermal energy in systems of nanoparticles, and used the method of transient thermoreflectance to monitor those dynamics, and assess whether thermal transport features special to nanoscale systems emerged. This same method was also used to study the thermal transport of a single system of layered membranes. Optical properties were investigated using computational simulations of a nanoparticle system, using the method of finite-difference time-domain simulation.

In nanoparticle studies, there are two features of interest special to …


Coupling Of Light's Orbital Angular Momentum To A Quantum Dot Ensemble, Alaa A. Bahamran Jan 2019

Coupling Of Light's Orbital Angular Momentum To A Quantum Dot Ensemble, Alaa A. Bahamran

Electronic Theses and Dissertations

We theoretically and experimentally investigate the transfer of orbital angular momentum from light to an ensemble of semiconductor-based nanostructures composed of lead sulfide quantum dots. Using an ensemble of quantum dots offers a higher cross-section and more absorption of twisted light fields compared to experimentally challenging single-nanostructure measurements. However, each quantum dot (except for on-center) sees a displaced light beam parallel to its own axis of symmetry. The transition matrix elements for the light-matter interaction are calculated by expressing the displaced light beam in terms of the appropriate light field centered on the nanoparticles. The resulting transition rate induced by …


Developing A Femtosecond Stimulated Raman Spectroscopy Experiment For Solid State Materials, Daniel Hammerland Aug 2018

Developing A Femtosecond Stimulated Raman Spectroscopy Experiment For Solid State Materials, Daniel Hammerland

Electronic Theses and Dissertations

Femtosecond Stimulated Raman Spectroscopy (FSRS) is a ultrafast spectroscopy technique first implemented by chemists to understand isomerization and other ultrafast molecular morphology changes by resolving vibrational dynamics[1, 2, 3]. FSRS has an unparalleled temporal and spectral resolution [4, 1, 5, 6] that arises as a result of a clever combination of picosecond and femtosecond pulses. However, despite this capability, FSRS has yet to be applied to modern materials in condensed matter physics. This thesis explores the design and implementation of FSRS to study two-dimensional materials in order to measure their quantum confined vibrational dynamics on utlrafast time scales.


Heat, Charge And Spin Transport Of Thin Film Nanostructures, Devin John Wesenberg Jan 2018

Heat, Charge And Spin Transport Of Thin Film Nanostructures, Devin John Wesenberg

Electronic Theses and Dissertations

Understanding of fundamental physics of transport properties in thin film nanostructures is crucial for application in spintronic, spin caloritronics and thermoelectric applications. Much of the difficulty in the understanding stems from the measurement itself. In this dissertation I present our thermal isolation platform that is primarily used for detection of thermally induced effects in a wide variety of materials. We can accurately and precisely produce in-plane thermal gradients in these membranes, allowing for thin film measurements on 2-D structures. First, we look at thermoelectric enhancements of doped semiconducting single-walled carbon nanotube thin films. We use the Wiedemann-Franz law to calculate …


Learning From Disorder And Noise In Physical Biology, Taylor Emil Firman Jan 2018

Learning From Disorder And Noise In Physical Biology, Taylor Emil Firman

Electronic Theses and Dissertations

Stochasticity, disorder, and noise play crucial roles in the functioning of many biological systems over many different length scales. On the molecular scale, most proteins are envisioned as pristinely folded structures, but intrinsically disordered proteins (IDPs) have no such folded state and still serve distinct purposes within the cell. At the scale of gene regulation, realistic in vivo conditions produce stochastic fluctuations in gene expression that can lead to advantageous bet-hedging strategies, but can be difficult to characterize using a deterministic framework. Even at the organismal scale, germband extension (GBE) in Drosophila melanogaster embryos systematically elongates the epithelial tissue using …


Molecular Mechanisms Of Protein Thermal Stability, Lucas Sawle Jan 2016

Molecular Mechanisms Of Protein Thermal Stability, Lucas Sawle

Electronic Theses and Dissertations

Organisms that thrive under extreme conditions, such as high salt concentration, low pH, or high temperature, provide an opportunity to investigate the molecular and cellular strategies these organisms have adapted to survive in their harsh environments. Thermophilic proteins, those extracted from organisms that live at high temperature, maintain their structure and function at much higher temperatures compared to their mesophilic counterparts, found in organisms that live near room temperature. Thermophilic and mesophilic homolog protein pairs have identical functionality, and show a high degree of structural and sequential similarity, but differ significantly in their response to high temperature. Addressing the principles …


Identification Of High Energy Cosmic Ray Electrons Using Advanced Techniques In Calet And Fermi Lat, Aaron James Worley Jan 2015

Identification Of High Energy Cosmic Ray Electrons Using Advanced Techniques In Calet And Fermi Lat, Aaron James Worley

Electronic Theses and Dissertations

Measurements of the cosmic ray electron spectrum have received much attention over the last decade as anomalies in both electron and positron observations have been detected independently by several experiments. The profound possible implications in the fields of high energy astrophysics and particle physics have allowed for many interpretations on the origin of these inconsistencies in the spectra. This research focuses on two space-borne cosmic radiation experiments at different stages in their mission lifetimes: the Calorimetric Electron Telescope (CALET) and the Fermi Large Area Telescope (LAT). We explore the proton-electron discriminating capabilities of the CALET instrument through Monte Carlo simulations. …


The Adsorption Of Polyatomic Molecules On Carbon Surfaces, Jared T. Burde Jan 2015

The Adsorption Of Polyatomic Molecules On Carbon Surfaces, Jared T. Burde

Electronic Theses and Dissertations

Carbon nanotubes exhibit the structure and chemical properties that make them apt substrates for many adsorption applications. Of particular interest are carbon nanotube bundles, whose unique geometry is conducive to the formation of pseudo-one-dimensional phases of matter, and graphite, whose simple planar structure allows ordered phases to form in the absence of surface effects. Although both of these structures have been the focus of many research studies, knowledge gaps still remain. Much of the work with carbon nanotubes has used simple adsorbates1-43, and there is little kinetic data available. On the other hand, there are many studies of …


Interferometric, Astrometric, And Photometric Studies Of Epsilon Aurigae: Seeing The Disk Around A Distant Star, Brian Keith Kloppenborg Jan 2012

Interferometric, Astrometric, And Photometric Studies Of Epsilon Aurigae: Seeing The Disk Around A Distant Star, Brian Keith Kloppenborg

Electronic Theses and Dissertations

Epsilon (ε) Aurigae is a binary star system that has baffled astronomers for 170 years. In 1821 it was first noticed that the star system had dimmed by nearly 50%. After many decades of photometric monitoring, the 27.1 year period was finally established in 1903. A few years later, in 1912, Henry Norris Russell published the first analytic methods for binary star analysis. Later application of these formulae came to an interesting conclusion; the system was composed of two stars: the visible F-type supergiant, and an equally massive, but yet photometrically and spectroscopically invisible, companion.

Several theories were advanced to …