Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Theses and Dissertations

Physics and Astronomy

Atomic, Molecular and Optical Physics

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui Nov 2023

Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui

Electronic Theses and Dissertations

Multidimensional coherent spectroscopy (MDCS) is a quickly growing field that has a lot of advantages over more conventional forms of spectroscopy. These advantages all come from the fact that MDCS allows us to get time resolved correlated emission and absorption spectra using very precisely chosen interactions between the density matrix and the excitation laser. MDCS spectra gives the researcher a lot of information that can be extracted purely through qualitative analysis. This is possible because state couplings are entirely separated on the spectra, and once we know how to read the data, we can see how carriers transport in the …


Nanoscale Thermal Transport In Thermally Isolated Nanostructures, Brian G. Green Jan 2019

Nanoscale Thermal Transport In Thermally Isolated Nanostructures, Brian G. Green

Electronic Theses and Dissertations

Experiments with nanoscale structures, designed to measure some of their thermal and optical properties, are the subjects of this dissertation. We studied the transport of thermal energy in systems of nanoparticles, and used the method of transient thermoreflectance to monitor those dynamics, and assess whether thermal transport features special to nanoscale systems emerged. This same method was also used to study the thermal transport of a single system of layered membranes. Optical properties were investigated using computational simulations of a nanoparticle system, using the method of finite-difference time-domain simulation.

In nanoparticle studies, there are two features of interest special to …


Coupling Of Light's Orbital Angular Momentum To A Quantum Dot Ensemble, Alaa A. Bahamran Jan 2019

Coupling Of Light's Orbital Angular Momentum To A Quantum Dot Ensemble, Alaa A. Bahamran

Electronic Theses and Dissertations

We theoretically and experimentally investigate the transfer of orbital angular momentum from light to an ensemble of semiconductor-based nanostructures composed of lead sulfide quantum dots. Using an ensemble of quantum dots offers a higher cross-section and more absorption of twisted light fields compared to experimentally challenging single-nanostructure measurements. However, each quantum dot (except for on-center) sees a displaced light beam parallel to its own axis of symmetry. The transition matrix elements for the light-matter interaction are calculated by expressing the displaced light beam in terms of the appropriate light field centered on the nanoparticles. The resulting transition rate induced by …