Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

Pure sciences

Physics

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist Jul 2016

Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist

Doctoral Dissertations

Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, …


Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai Apr 2016

Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai

Doctoral Dissertations

Encouraged by potential applications in rust coatings, self-healing composites, selective delivery of drugs, and catalysis, the transport of molecular species through Halloysite nanotubes (HNTs), specifically the storage and controlled release of these molecules, has attracted strong interest in recent years. HNTs are a naturally occurring biocompatible nanomaterial that are abundantly and readily available. They are alumosilicate based tubular clay nanotubes with an inner lumen of 15 nm and a length of 600-900 nm. The size of the inner lumen of HNTs may be adjusted by etching. The lumen can be loaded with functional agents like antioxidants, anticorrosion agents, flame-retardant agents, …


Measurement Of [Special Characters Omitted] (Pp[Special Characters Omitted]Tt) In The[Special Characters Omitted]+ Jets Channel Using 4.7 Fb-1 Of Data From The Atlas Experiment Of The Large Hadron Collider, Anirvan Sircar Oct 2013

Measurement Of [Special Characters Omitted] (Pp[Special Characters Omitted]Tt) In The[Special Characters Omitted]+ Jets Channel Using 4.7 Fb-1 Of Data From The Atlas Experiment Of The Large Hadron Collider, Anirvan Sircar

Doctoral Dissertations

The top quark is the heaviest of the known elementary particles in the Standard Model. Top quark decay can result into various final states; therefore, careful study of its production rate and other properties is very important for particle physics. With the shutdown of the Tevatron, The Large Hadron Collider (LHC) is the only facility currently capable of studying top quark properties. The data obtained by proton-proton collisions in the LHC is recorded by two general purpose detectors, ATLAS and CMS. The results in the dissertation are from the ATLAS detector. A new measurement is reported of &sgr;(pp [special …


Event Shapes In Proton-Proton Collisions At Center Of Mass Energy = 1.96 Tev, Scott Atkins Jul 2012

Event Shapes In Proton-Proton Collisions At Center Of Mass Energy = 1.96 Tev, Scott Atkins

Doctoral Dissertations

This dissertation presents the analysis of nine different event shapes measured in high energy pp¯ collisions. An event shape can be defined as an event-based quantity that measures how the final energies are distributed in the final event. This analysis will test strong interactions as described by Quantum Chromodynamics (QCD), through their implementation in different Monte Carlo-based models. Each of the event shapes provides information about the flow of energy in QCD events and about the hadronic final states that occur in pp¯ particle collisions, thus allowing the study of the dynamics of QCD multijet events. Any deviation of an …


A Finite Difference Method For Studying Thermal Deformation In Three-Dimensional Thin Films Exposed To Ultrashort Pulsed Lasers, Suyang Zhang Jul 2008

A Finite Difference Method For Studying Thermal Deformation In Three-Dimensional Thin Films Exposed To Ultrashort Pulsed Lasers, Suyang Zhang

Doctoral Dissertations

Thermal analysis related to ultrashort-pulsed lasers has been intensely studied in science and engineering communities in recent years, because the pulse duration of ultrashort-pulsed lasers is only the order of sub-picoseconds to femtoseconds, and the lasers have exclusive capabilities in limiting the undesirable spread of the thermal process zone in the heated sample. Studying the thermal deformation induced by ultrashort-pulsed lasers is essential for preventing thermal damage. For the ultrashort-pulsed laser, the thermal damage is different from that caused by the long pulsed lasers and cracks occur after heating.

This dissertation presents a new finite difference method for studying thermal …


Developing A B -Tagging Algorithm Using Soft Muons At Level-3 For The Dø Detector At Fermilab, Mayukh Das Apr 2005

Developing A B -Tagging Algorithm Using Soft Muons At Level-3 For The Dø Detector At Fermilab, Mayukh Das

Doctoral Dissertations

The current data-taking phase of the DØ detector at Fermilab, called Run II, is designed to aid the search for the Higgs Boson. The neutral Higgs is postulated to have a mass of 117 GeV. One of the channels promising the presence of this hypothetical particle is through the decay of b-quark into a muon. The process of identifying a b-quark in a jet using muon as a reference is b-tagging with a muon tag.

At the current data taking and analysis rate, it will take long to reach the process of identifying valid events. The triggering mechanism of the …


Fluid Flow In Micro-Channels: A Stochastic Approach, Hilda Marino Black Jul 2000

Fluid Flow In Micro-Channels: A Stochastic Approach, Hilda Marino Black

Doctoral Dissertations

In this study free molecular flow in a micro-channel was modeled using a stochastic approach, namely the Kolmogorov forward equation in three dimensions. Model equations were discretized using Central Difference and Backward Difference methods and solved using the Jacobi method. Parameters were used that reflect the characteristic geometry of experimental work performed at the Louisiana Tech University Institute for Micromanufacturing.

The solution to the model equations provided the probability density function of the distance traveled by a particle in the micro-channel. From this distribution we obtained the distribution of the residence time of a particle in the micro-channel. Knowledge of …