Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Deep-Learned Generative Representations Of 3d Shape Families, Haibin Huang Nov 2017

Deep-Learned Generative Representations Of 3d Shape Families, Haibin Huang

Doctoral Dissertations

Digital representations of 3D shapes are becoming increasingly useful in several emerging applications, such as 3D printing, virtual reality and augmented reality. However, traditional modeling softwares require users to have extensive modeling experience, artistic skills and training to handle their complex interfaces and perform the necessary low-level geometric manipulation commands. Thus, there is an emerging need for computer algorithms that help novice and casual users to quickly and easily generate 3D content. In this work, I will present deep learning algorithms that are capable of automatically inferring parametric representations of shape families, which can be used to generate new 3D …


Deep Energy-Based Models For Structured Prediction, David Belanger Nov 2017

Deep Energy-Based Models For Structured Prediction, David Belanger

Doctoral Dissertations

We introduce structured prediction energy networks (SPENs), a flexible frame- work for structured prediction. A deep architecture is used to define an energy func- tion over candidate outputs and predictions are produced by gradient-based energy minimization. This deep energy captures dependencies between labels that would lead to intractable graphical models, and allows us to automatically discover discrim- inative features of the structured output. Furthermore, practitioners can explore a wide variety of energy function architectures without having to hand-design predic- tion and learning methods for each model. This is because all of our prediction and learning methods interact with the energy …