Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Experimental And Statistical Techniques To Probe Extraordinary Electronic Properties Of Molecules, Byron Hager Smith Dec 2013

Experimental And Statistical Techniques To Probe Extraordinary Electronic Properties Of Molecules, Byron Hager Smith

Doctoral Dissertations

The existence of an additional electron or hole in the presence of an electric monopole is a well understood physical system, but this ideality is far from the true physical properties of many molecules. Examples of such irregular electronic states include the attachment of an excess charge to a molecule's dipole moment, electronic correlation spanning a molecule, or attachment of multiple excess charges. Current theoretical and experimental interpretations widely vary for these states and further elucidation of the nature of irregular electronic structure may provide solutions to unexplained observations and the impetus for industrial application. For example, in the case …


Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose Aug 2013

Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose

Doctoral Dissertations

Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations. …


Long Time Asymptotics Of Ornstein-Uhlenbeck Processes In Poisson Random Media, Fei Xing Aug 2013

Long Time Asymptotics Of Ornstein-Uhlenbeck Processes In Poisson Random Media, Fei Xing

Doctoral Dissertations

The Models of Random Motions in Random Media (RMRM) have been shown to have fruitful applications in various scientific areas such as polymer physics, statistical mechanics, oceanography, etc. In this dissertation, we consider a special model of RMRM: the Ornstein-Uhlenbeck process in a Poisson random medium and investigate the long time evolution of its random energy. We give complete answers to the long time asymptotics of the exponential moments of the random energy with both positive and negative coefficients, under both quenched and annealed regimes. Through these results, we find out a dramatic difference between the long time behavior of …


Geographic And Temporal Epidemiology Of Campylobacteriosis, Jennifer Weisent May 2013

Geographic And Temporal Epidemiology Of Campylobacteriosis, Jennifer Weisent

Doctoral Dissertations

Campylobacteriosis is a leading cause of gastroenteritis in the United States. The focus of this research was to (i) analyze and predict spatial and temporal patterns and associations for campylobacteriosis risk and (ii) compare the utility of advanced modeling methods. Laboratory-confirmed Campylobacter case data, obtained from the Foodborne Diseases Active Surveillance Network were used in all investigations.

We compared the accuracy of forecasting techniques for campylobacteriosis risk in Minnesota, Oregon and Georgia and found that time series regression, decomposition, and Box-Jenkins Autoregressive Integrated Moving Averages reliably predict monthly risk of infection for campylobacteriosis. Decomposition provided the fastest, most accurate, user-friendly …


Automating Large-Scale Simulation Calibration To Real-World Sensor Data, Richard Everett Edwards May 2013

Automating Large-Scale Simulation Calibration To Real-World Sensor Data, Richard Everett Edwards

Doctoral Dissertations

Many key decisions and design policies are made using sophisticated computer simulations. However, these sophisticated computer simulations have several major problems. The two main issues are 1) gaps between the simulation model and the actual structure, and 2) limitations of the modeling engine's capabilities. This dissertation's goal is to address these simulation deficiencies by presenting a general automated process for tuning simulation inputs such that simulation output matches real world measured data. The automated process involves the following key components -- 1) Identify a model that accurately estimates the real world simulation calibration target from measured sensor data; 2) Identify …


New Microarray Image Segmentation Using Segmentation Based Contours Method, Yuan Cheng Jan 2013

New Microarray Image Segmentation Using Segmentation Based Contours Method, Yuan Cheng

Doctoral Dissertations

The goal of the research developed in this dissertation is to develop a more accurate segmentation method for Affymetrix microarray images. The Affymetrix microarray biotechnologies have become increasingly important in the biomedical research field. Affymetrix microarray images are widely used in disease diagnostics and disease control. They are capable of monitoring the expression levels of thousands of genes simultaneously. Hence, scientists can get a deep understanding on genomic regulation, interaction and expression by using such tools.

We also introduce a novel Affymetrix microarray image simulation model and how the Affymetrix microarray image is simulated by using this model. This simulation …