Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Synthesis And Characterization Of Fullerene-Based Hydrogen Storage Materials, Patrick Alan Ward Dec 2013

Synthesis And Characterization Of Fullerene-Based Hydrogen Storage Materials, Patrick Alan Ward

Doctoral Dissertations

Storing hydrogen safely and efficiently is an area of great interest for the utilization of hydrogen as an energy carrier in transportation applications. The feasibility of using fullerenes in hydrogen storage materials was investigated. Alkali decorated fullerenes LixC60 [LixC60] and NaxC60 [NaxC60] were found to enhance the hydrogen chemisorption and physisorption properties of fullerenes. Although the overall hydrogen physisorption uptake in these materials is low due to the crystalline nature of the material, the isosteric heats of adsorption of fullerenes were increased by lithium doping. C60 [C60] is also capable of acting as …


Magneto-Optical Properties Of Complex Oxides, Peng Chen Dec 2013

Magneto-Optical Properties Of Complex Oxides, Peng Chen

Doctoral Dissertations

Complex oxides give rise to rich physics and exotic cross-coupled electronic and magnetic properties. This is because of the competing interaction between charge, structure, and magnetism in the materials. In this dissertation I present a spectroscopic investigation of several model complex oxides under external stimuli of magnetic field and temperature. The compounds of interest include BiFeO3 [bismuth ferrite] nanoparticles and tetragonal film, Bi1-xNdxFeO3 [neodymium doped bismuth ferrite], α-Fe2O3 [hematite], Ni3V2O8 [nickel vanadate], and RIn1-xMnxO3 [manganese doped rare earth indium oxide]. …


Characterization Techniques And Electrolyte Separator Performance Investigation For All Vanadium Redox Flow Battery, Zhijiang Tang Dec 2013

Characterization Techniques And Electrolyte Separator Performance Investigation For All Vanadium Redox Flow Battery, Zhijiang Tang

Doctoral Dissertations

The all-vanadium redox flow battery (VRFB) is an excellent prospect for large scale energy storage in an electricity grid level application. High battery performance has lately been achieved by using a novel cell configuration with advanced materials. However, more work is still required to better understand the reaction kinetics and transport behaviors in the battery to guide battery system optimization and new battery material development. The first part of my work is the characterization of the battery systems with flow-through or flow-by cell configurations. The configuration difference between two cell structures exhibit significantly different polarization behavior. The battery output can …


Exploration Of Aqueous Interfaces And Their Effect On Ion Behavior, Oneka T. Cummings Jul 2013

Exploration Of Aqueous Interfaces And Their Effect On Ion Behavior, Oneka T. Cummings

Doctoral Dissertations

An in-depth understanding of a wide range of physical, chemical, atmospheric and biological processes can only be achieved after the structure and dynamics of interfaces and the interfacial behavior of aqueous species, such as ions, are thoroughly studied and understood. This dissertation describes computational studies conducted to gain a more comprehensive understanding of such interfaces and the behavior of ions in the bulk and interfacial regions of the (1) air/water interface, and (2) alkane/water interfaces.

At the air/water interface the effect of counterion (sodium cations) charge and the influence of ion pairing on anion (chloride) propensity for the air/water interface …


Fluorescence Spectroscopy With Correlated Atomic Force Microscopy Of Gold Nanoparticles And Meso-Scale Ribbons, Meredith Marie Therrien May 2013

Fluorescence Spectroscopy With Correlated Atomic Force Microscopy Of Gold Nanoparticles And Meso-Scale Ribbons, Meredith Marie Therrien

Doctoral Dissertations

Studies on the optical properties of gold nanoparticles are of great interest due to the size and shape control and easy adaptability through functionalization to most any application, everything from nanomedicine to nanosensing. Gold nanoparticle optical properties change with size, morphology, and environment. Gold nanospheres were explored to determine the effect of environmental change, from many particles in solution to a single particle immobilized and in air, on fluorescence peak position. A statistical distribution of single gold nanorod fluorescence spectra demonstrate the spectral changes associated with slight variations in size. In solution, gold nanorods self-absorb and only exhibit bulk gold …


Resonance Hyper-Raman Characterization Of Nonlinear Chromophores, Christopher Bennett Milojevich May 2013

Resonance Hyper-Raman Characterization Of Nonlinear Chromophores, Christopher Bennett Milojevich

Doctoral Dissertations

Hyper-Raman spectroscopy is a nonlinear optical probe which can be used to explore the multi-photon properties of molecules. Three studies are presented in this dissertation. The first study is a combined experimental investigation of the surfaceenhanced hyper-Raman scattering with a theoretical study of the electronic states of the Rhodamine 6G molecule. This study demonstrates that hyper-Raman spectroscopy can be used to probe electronic states which are one-photon inaccessible. The second study involves a comparison of experimentally measured resonance hyper-Raman spectra to first-principles calculations of the resonance hyper-Raman scattering. This study shows the utility of coupling hyper-Raman spectroscopy and hyper-Raman calculations …


Alkane Adsorption On Mgo(100): Volumetric Isotherm, Inelastic Neutron Scattering, And Computational Studies, Andrew Spencer Hicks May 2013

Alkane Adsorption On Mgo(100): Volumetric Isotherm, Inelastic Neutron Scattering, And Computational Studies, Andrew Spencer Hicks

Doctoral Dissertations

Volumetric adsorption isotherms and computational molecular dynamics (MD) simulations were performed for nonane and decane adfilms on MgO(100) nanocubes. From the isotherms, variety of thermodynamic quantities are calculated. These values, along with visual inspection of the isotherms, indicate a layer by layer trend from 2D to 3D behavior. This is attributed to the increasing importance of vertical adsorbate-adsorbate interactions as distance from the surface increases. Additionally, a 2D phase transition is observed for the first adsorbed layer as indicated by the evolution of the widths of the isotherm first derivative peaks. These experimental results are complemented by the MD calculations, …