Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Simulation Of Light Propagation Captured By Photoemission Electron Microscopy (Peem), Nabila Islam Jul 2021

Simulation Of Light Propagation Captured By Photoemission Electron Microscopy (Peem), Nabila Islam

Dissertations and Theses

The Photoemission electron microscopes (PEEM) is a powerful tool capable of synchronously imaging wave nature of light manifested by interference patterns as well as its particle nature through the energy exchange between the incident photons and the photoemitted imaging electrons. PEEM offers a non-invasive high-resolution approach for studying light propagation and interaction phenomena within a nanophotonic waveguide [7,8]. The electric field intensity variation of the interference pattern yielded by the interaction between the incident light and the guided mode coupled into the waveguide produces varying photoemission yields creating contrast in PEEM image. The guided modes cannot be excited simply by …


Photoemission Electron Microscopy For Direct Observation Of Photonic And Plasmonic Phenomena, Theodore Stenmark May 2021

Photoemission Electron Microscopy For Direct Observation Of Photonic And Plasmonic Phenomena, Theodore Stenmark

Dissertations and Theses

Photoemission electron microscopy (PEEM) is a high-resolution microscopy technique that collects photoemitted electrons from the sample surface to form an image. PEEM offers a non-scanning imaging method with a spatial resolution in the range of 5-100nm by combining the advantages of light excitation and electron imaging. Our work looks at PEEM as an analysis tool for photonic and plasmonic phenomena. Photonic wave guiding structures exhibiting a strong dispersion relation have attracted considerable attention for applications in integrated optics, communications and sensing devices. Line defects in a photonic crystal (PC) slab offer a highly efficient way to create light with group …


Using Fundamental Properties Of Light To Investigate Photonic Effects In Condensed Matter And Biological Tissues, Laura A. Sordillo Jan 2019

Using Fundamental Properties Of Light To Investigate Photonic Effects In Condensed Matter And Biological Tissues, Laura A. Sordillo

Dissertations and Theses

Light possesses characteristics such as polarization, wavelength and coherence. The interaction of light and matter, whether in a semiconductor or in a biological sample, can reveal important information about the internal properties of a system. My thesis focuses on two areas: photocarriers in gallium arsenide and biomedical optics. Varying the excitation wavelength can be used to study both biological tissue and condensed matter. I altered the excitation wavelengths to be in the longer near-infrared (NIR) optical windows, in the shortwave infrared (SWIR) range, a wavelength region previously thought to be unusable for medical imaging. With this method, I acquired high …