Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr Mar 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr

Dissertations

Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4and NaAlH4indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …


Dft Investigations Of Hygrogen Storage Materials, Gang Wang Jan 2017

Dft Investigations Of Hygrogen Storage Materials, Gang Wang

Dissertations

Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation. Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of around 100 …


Reactor R&D: Synthesis And Optimization Of Metallic Nitride Fullerenes And The Introduction Of Two New Classes Of Endohedral Metallofullerenes, Metallic Nitride Azafullerenes And Oxo-Metallic Fullerenes, Curtis Earl Coumbe Dec 2009

Reactor R&D: Synthesis And Optimization Of Metallic Nitride Fullerenes And The Introduction Of Two New Classes Of Endohedral Metallofullerenes, Metallic Nitride Azafullerenes And Oxo-Metallic Fullerenes, Curtis Earl Coumbe

Dissertations

Metallic nitride fullerenes (MNFs) were discovered in 1999. This class of endohedral fullerenes show promise in a new diverse range of useful applications. Since then, focus has shifted to the selective synthesis of these molecules with yields that would accommodate adequate sample distribution. Using the electric arc method, the traditional yield of these molecules has been very low (i.e. < 5 mg), and only a small percentage of the fullerene products (i.e. < 5%). This dissertation introduces the novel CAPTEAR (Chemically Adjusting Plasma Temperature, Energy, And Reactivity) method that allows the targeted synthesis of MNFs in high purity and yield. This method utilizes a nontraditional oxidizing method for fullerene synthesis that has not only provided optimization of MNFs, but also resulted in the discovery of two new classes of fullerenes: metallic nitride azafullerenes (MNAFs) and oxo-metallic fullerenes (OMFs). Evidence suggests that the nitrogen of the MNAF cage provides stability for the trimetallic nitride clusters, while the OMFs are the first fullerenes to encapsulate oxygen and incorporate a seven atom cluster inside a Cgo cage.

Other efforts to increase yields resulted from scaling up production of fullerenes by using larger quantities of starting materials. These larger quantities required energy (electrical current) beyond the capacity of the traditional electric arc generator. Therefore, a new electric arc generator …