Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

High-Energy Storm Events And Their Impacts On Carbon Storage In Tidal Wetlands Of South Carolina, Gavin Gleasman Aug 2023

High-Energy Storm Events And Their Impacts On Carbon Storage In Tidal Wetlands Of South Carolina, Gavin Gleasman

All Dissertations

Atmospheric carbon dioxide (CO2) concentrations have been increasing at an accelerating rate for the past two centuries, profoundly impacting global climate change. Atmospheric CO2 concentrations are influenced by the global carbon cycle through physical and biogeochemical pathways. Tidal wetland environments play a vital role in the global carbon cycle by offsetting atmospheric CO2 concentrations through their natural physiochemical processes of high autotrophic productivity, allochthonous organic matter deposition, anoxic soils, and continuous accretion which promotes carbon sequestration with long-term storage at the land-ocean margin. The Intergovernmental Panel on Climate Change (IPCC) and United States Global Change Research …


Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin May 2023

Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin

All Dissertations

Inverse problems involve extracting the internal structure of a physical system from noisy measurement data. In many fields, the Bayesian inference is used to address the ill-conditioned nature of the inverse problem by incorporating prior information through an initial distribution. In the nonparametric Bayesian framework, surrogate models such as Gaussian Processes or Deep Neural Networks are used as flexible and effective probabilistic modeling tools to overcome the high-dimensional curse and reduce computational costs. In practical systems and computer models, uncertainties can be addressed through parameter calibration, sensitivity analysis, and uncertainty quantification, leading to improved reliability and robustness of decision and …


Ligand-Promoted Dissolution Of Uranyl Phosphate Across Scales, Brennan Ferguson Dec 2022

Ligand-Promoted Dissolution Of Uranyl Phosphate Across Scales, Brennan Ferguson

All Dissertations

The formation of uranyl phosphate precipitate is a remediation strategy because the low solubility of uranyl phosphate minerals, like chernikovite, limits the mobility of uranium in contaminated soils. However, organic ligands can complex with aqueous metal cations to form more soluble species. For example, citrate is a commonly occurring organic ligand produced by plants and microbes that increases the solubility of uranium and therefore the dissolution of uranyl phosphate minerals in the uranyl phosphate-citrate system. This effect is an important control on the mobility of uranium in organic-rich, and near-surface vegetated environments. Nevertheless, key aspects of the citrate-uranyl phosphate system …


Geology-Based Shear-Wave Velocity Model Of Reference Site Conditions In South Carolina For Seismic Site Response Analysis, Camilius Amevorku Nov 2022

Geology-Based Shear-Wave Velocity Model Of Reference Site Conditions In South Carolina For Seismic Site Response Analysis, Camilius Amevorku

All Dissertations

Assessing earthquake hazard in the State of South Carolina is important because it is one of the most seismically active regions of the eastern United States and has experienced earthquakes of damaging levels in the historical past. Examples of these damaging seismic events are the 1886 Charleston earthquake (M 6.7 to 7.5) and the 1913 Union County earthquake (M 4.5 to 5.5).

Small-strain shear-wave velocity (VS) is an important parameter in performing site response analysis. The deep nature of the top of reference firm rock (i.e., VS ≥ 760 m/s or B-C boundary) due to …


Characterization Of Water Flow And Solute Transport Driven By Preferential Flow In Soil Vadose Zone, Abdullah Al Mamun May 2022

Characterization Of Water Flow And Solute Transport Driven By Preferential Flow In Soil Vadose Zone, Abdullah Al Mamun

All Dissertations

The vadose zone acts as a buffer zone between the ground surface and the aquifers underneath and controls the transmission of infiltrating water and contaminants, for example, pesticides and chemical spills. Therefore, understanding the flow and transport processes that dominate the vadose zone is important. Macropores are ubiquitous and particularly found in abundance in the vadose zone. These macropores facilitate preferential flow, through which water travels rapidly deep into the soil, bypassing most of the porous matrix. Preferential flow and transport have environmental significance as their processes impact hydrology, ecology, agriculture, subsurface contamination, and waste management sectors. Thus, the overall …


Wetland Uranium Transport Via Iron-Organic Matter Flocs And Hyporheic Exchange, Connor J. Parker May 2022

Wetland Uranium Transport Via Iron-Organic Matter Flocs And Hyporheic Exchange, Connor J. Parker

All Dissertations

Uranium (U) released from the M-Area at the Department of Energy Savannah River Site into Tims Branch, a seasonal wetland and braided stream system, is estimated to be 43,500 kg between 1965 and 1984. The motivation for this work is the uranium’s persistence in the wetland for decades, where it is estimated that 80% of the U currently remains in the Tims Branch wetland. U has begun to incorporate into wetland iron (Fe) and carbon cycles, associating with local Fe mineralogy and deposits of rich wetland organic matter (OM). The objective of this work is to characterize the chemical phases …


Decision Environments To Encourage More Sustainable Infrastructure Outcomes, Earl Shealy May 2015

Decision Environments To Encourage More Sustainable Infrastructure Outcomes, Earl Shealy

All Dissertations

Physical infrastructure (i.e. roads, pipelines, airports, dams, landfills, and water treatment systems) contributes directly to sustainability outcomes such as energy and water use and climate changing emissions. The infrastructure built today will likely impact future generations for many years. Planning, design and development decisions about infrastructure are critical to the future performance of these systems. Such decisions about infrastructure are complex with multiple variables, alternative options, and design stages. To manage decisions that exceed cognitive capacity to consider all options, decision makers often create mental shortcuts (heuristics), and accompanied errors (biases). The potential cognitive biases when dealing with complex decisions …


Toward Understanding The Thermodynamics And Mechanisms Of Actinide Sorption Reactions, Shanna Estes Dec 2014

Toward Understanding The Thermodynamics And Mechanisms Of Actinide Sorption Reactions, Shanna Estes

All Dissertations

The environmental fate of actinides is greatly influenced by interfacial reactions, including sorption onto solid surfaces. Because changes in the primary hydration sphere of the actinide are expected to greatly influence the thermodynamics (i.e., reaction enthalpy and entropy) of these reactions, examining actinide sorption thermodynamics may provide insight into actinide sorption mechanisms. Additionally, examining actinide sorption thermodynamics may enhance the ability to model or predict these reactions in environmental or engineered systems where variable or elevated temperatures are expected. However, few researchers have studied actinide sorption thermodynamics. Therefore, this research examined the thermodynamics of Eu(III) (a trivalent actinide analog), Th(IV), …


Experimental Evidence For Colloid-Facilitated Transport Of Plutonium, Hilary Emerson Dec 2014

Experimental Evidence For Colloid-Facilitated Transport Of Plutonium, Hilary Emerson

All Dissertations

Colloid-facilitated transport of the actinides has been observed previously in the field on the kilometer scale. The objective of this work is to investigate the mechanisms of colloid-facilitated transport with controlled settings and conditions. The experimental work in this dissertation investigates transport of a ternary complex with iron oxide colloids, organic ligands and actinides in the presence of quartz or a natural sandy soil as well as simplified systems building up to the ternary complexes. The first three papers investigate the following: (1) unsaturated transport of iron oxide colloids in a natural sandy soil lysimeter with and without natural organic …


Isolated And Ephemeral Wetlands Of Southern Appalachia: Biotic Communities And Environmental Drivers Across Multiple Temporal And Spatial Scales, Joanna Hawley May 2014

Isolated And Ephemeral Wetlands Of Southern Appalachia: Biotic Communities And Environmental Drivers Across Multiple Temporal And Spatial Scales, Joanna Hawley

All Dissertations

Throughout the world, wetlands are known to support a wide variety of taxa as well as high levels of biodiversity and species richness. Although the ecological significance of wetlands is well documented in the scientific literature, efforts to map and assess wetlands on regional or national scales (e.g., National Wetlands Inventory (NWI)) often overlook wetlands which are either very small (< 1 ha) or have ephemeral hydroperiods. While the vast majority of wetland research in the southeastern United States has focused on wetlands distributed across the coastal plain ecoregion, very little information exists on small and/or ephemeral wetlands in areas of southern Appalachia, although there are several notable exceptions. Despite the paucity of small wetland data in this region, the southeastern US is known as a hotspot for both aquatic biodiversity and species endemism. My goal with this project was to examine the biotic communities inhabiting small, ephemeral and geographically-isolated wetlands to identify the major environmental drivers that contribute to observed community patterns and species' distributions. I studied a set of small, mostly-ephemeral, mostly-isolated wetlands (N = 41) in the upper Piedmont and lower Blue Ridge ecoregions of South Carolina from January-June of 2010 and 2011 and focused my efforts on describing the structure, biotic communities and surrounding habitat characteristics of my study wetlands. I observed high levels of species richness and biodiversity in this previously-undocumented wetland system, despite the small size and ephemeral nature of study wetlands. My results indicated that the amphibian and benthic invertebrate communities of small, ephemeral wetlands responded to different environmental drivers (e.g., wetland depth, area, hydroperiod, canopy cover, surrounding land use types) occurring across multiple spatial and temporal scales. Additionally, the amphibian community was significantly influenced by a number of environmental variables occurring at both the within-pond scale and larger spatial scales (250 m, 500 m and 1 km surrounding land cover variables). By contrast, the benthic invertebrate community was significantly influenced primarily by variables occurring at the within-pond scale. This wetland system also served as both breeding and overwintering habitat for a variety of species such as wood frogs (Lithobates sylvatica), spotted salamanders (Ambystoma maculatum), bullfrogs (Lithobates catesbeiana), cricket frogs (Acris crepitans). This study highlights the ecological importance of small, ephemeral aquatic habitats in a region where little research exists regarding such systems; these often-unnoticed ecosystems are likely the result of a combination of historical anthropogenic and natural environmental process. These legacy wetlands (i.e., wetlands that are the unintended result of some human-induced environmental change in either the recent or long-term past) are found ubiquitously across the landscape and are often missed by coarse-filter mapping approaches (e.g., National Wetlands Inventory). I observed many study wetlands to be extremely small in size (< 0.05 ha) and that many wetlands were habitats of circumstance and opportunity rather than of permanence and predictability. The ephemerality of the majority of study wetlands demonstrates the biological significance of small, temporary habitats for many species requiring these habitats for breeding activity. Despite the small size and ephemeral nature of my study wetlands, I found that these wetlands represented a large proportion of amphibian biodiversity in the regional species pool and thus, are an important conservation feature at the local, landscape and regional scales. My study demonstrates that small, semi-isolated, mostly-ephemeral wetlands in southern Appalachia support high levels of biodiversity and are an important asset deserving of further study and conservation recognition.