Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Peer-Led Team Learning In Calculus-Based Introductory Physics: Implementation And Evaluation, Siera Maia Stoen Aug 2020

Peer-Led Team Learning In Calculus-Based Introductory Physics: Implementation And Evaluation, Siera Maia Stoen

Arts & Sciences Electronic Theses and Dissertations

Robust evidence shows that Peer-led Team Learning (PLTL) improves the academic success of college students in introductory Science, Technology, Engineering, and Mathematics (STEM) courses. However, further research is needed to gain a fuller understanding of the benefits of PLTL and the aim of this dissertation is to explore two key and understudied questions surrounding the effects of PLTL. First, does deviating from the optimal implementation of PLTL change its effectiveness? Second, what specific outcomes, in addition to academic success (e.g., exam scores), does PLTL improve? This dissertation will provide a fuller picture of the impact of PLTL by examining its …


Elements Of The Mathematical Formulation Of Quantum Mechanics, Keunjae Go May 2016

Elements Of The Mathematical Formulation Of Quantum Mechanics, Keunjae Go

Senior Honors Papers / Undergraduate Theses

In this paper, we will explore some of the basic elements of the mathematical formulation of quantum mechanics. In the first section, I will list the motivations for introducing a probability model that is quite different from that of the classical probability theory, but still shares quite a few significant commonalities. Later in the paper, I will discuss the quantum probability theory in detail, while paying a brief attention to some of the axioms (by Birkhoff and von Neumann) that illustrate both the commonalities and differences between classical mechanics and quantum mechanics. This paper will end with a presentation of …


Determination Of Average Loss Lifetimes For Near‐Earth Electrons In Solar Storms, John Blears Mar 2013

Determination Of Average Loss Lifetimes For Near‐Earth Electrons In Solar Storms, John Blears

Undergraduate Theses—Unrestricted

The rate of electron wave‐particle scattering in the near‐Earth magnetosphere is investigated using multiple simulations of solar storms from solar cycle 23 (1996‐2005). Simulations are created using the Hot Electron and Ion Drift Integrator (HEIDI) model, which analyzes the drifts of keV‐energy electrons through the inner magnetosphere and identifies the precipitation of these particles into the upper atmosphere. The loss lifetime formulation used by HEIDI, which represents the rate at which the keV‐energy of the electrons is extinguished, predicts unreasonably large loss lifetimes deep in the inner magnetosphere. This discrepancy between the values used by the HEIDI model and those …


Superfluidity In Neutron Stars, Samuel J. Witte Mar 2013

Superfluidity In Neutron Stars, Samuel J. Witte

Undergraduate Theses—Unrestricted

Nucleon pairing is studied with specific considerations directed toward the possible influence on neutron star cooling. We present an in-depth analysis of BCS theory using realistic nuclear potentials and consider the impact short-range correlations can have on the gap. Gap calculations are incorporated into neutron star cooling simulations and the significance of the 3P2 −3F2 channel in various hadronic cooling models is closely examined. An analysis of the 1S0 gap in neutron matter suggests short-range correlations can drastically alter the magnitude, density range, and temperature dependence of the gap. While the newly constructed 1S0 gap does not significantly alter the …