Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Wollongong

Performance

2018

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Plasma-Induced Amorphous Shell And Deep Cation-Site S Doping Endow Tio2 With Extraordinary Sodium Storage Performance, Hanna He, Dan Huang, Wei Kong Pang, Dan Sun, Qi Wang, Yougen Tang, Xiaobo Ji, Zaiping Guo, Haiyan Wang Jan 2018

Plasma-Induced Amorphous Shell And Deep Cation-Site S Doping Endow Tio2 With Extraordinary Sodium Storage Performance, Hanna He, Dan Huang, Wei Kong Pang, Dan Sun, Qi Wang, Yougen Tang, Xiaobo Ji, Zaiping Guo, Haiyan Wang

Australian Institute for Innovative Materials - Papers

Structural design and modification are effective approaches to regulate the physicochemical properties of TiO 2 , which play an important role in achieving advanced materials. Herein, a plasma-assisted method is reported to synthesize a surface-defect-rich and deep-cation-site-rich S doped rutile TiO 2 (R-TiO 2- x -S) as an advanced anode for the Na ion battery. An amorphous shell (≈3 nm) is induced by the Ar/H 2 plasma, which brings about the subsequent high S doping concentration (≈4.68 at%) and deep doping depth. Experimental results and density functional theory calculations demonstrate greatly facilitated ion diffusion, improved electronic conductivity, and an increased …


Effect Of Alf3-Coated Li4ti5o12 On The Performance And Function Of The Lini0.5mn1.5o4||Li4ti5o12 Full Battery-An In-Operando Neutron Powder Diffraction Study, Gemeng Liang, Anoop Somanathan Pillai Sushamakumari Amma, Vanessa K. Peterson, Kuan-Yu Ko, Chia-Ming Chang, Cheng-Zhang Lu, Chia-Erh Liu, Shih-Chieh Liao, Jin-Ming Chen, Zaiping Guo, Wei Kong Pang Jan 2018

Effect Of Alf3-Coated Li4ti5o12 On The Performance And Function Of The Lini0.5mn1.5o4||Li4ti5o12 Full Battery-An In-Operando Neutron Powder Diffraction Study, Gemeng Liang, Anoop Somanathan Pillai Sushamakumari Amma, Vanessa K. Peterson, Kuan-Yu Ko, Chia-Ming Chang, Cheng-Zhang Lu, Chia-Erh Liu, Shih-Chieh Liao, Jin-Ming Chen, Zaiping Guo, Wei Kong Pang

Australian Institute for Innovative Materials - Papers

The LiNi0.5Mn1.5O4||Li4Ti5O12(LMNO||LTO) battery possesses a relatively-high energy density and cycle performance, with further enhancement possible by application of an AlF3coating on the LTO electrode particles. We measure the performance enhancement to the LMNO||LTO battery achieved by a AlF3coating on the LTO particles through electrochemical testing and use in-operando neutron powder diffraction to study the changes to the evolution of the bulk crystal structure during battery cycling. We find that the AlF3coating along with parasitic Al doping slightly increases capacity and greatly increases rate capability of the LTO electrode, as well as significantly reducing capacity loss on cycling, facilitating a gradual …


Porous Nati2(Po4)(3) Nanocubes Anchored On Porous Carbon Nanosheets For High Performance Sodium-Ion Batteries, Ziqi Wang, Jiaojiao Liang, Kai Fan, Xiaodi Liu, Caiyun Wang, Jianmin Ma Jan 2018

Porous Nati2(Po4)(3) Nanocubes Anchored On Porous Carbon Nanosheets For High Performance Sodium-Ion Batteries, Ziqi Wang, Jiaojiao Liang, Kai Fan, Xiaodi Liu, Caiyun Wang, Jianmin Ma

Australian Institute for Innovative Materials - Papers

NaTi2(PO4)3 has attracted great interest as anode material for sodium ion batteries owing to its open three-dimensional framework structure and limited volume changes during the charge and discharge process. However, the poor intrinsic electronic conductivity of NaTi2(PO4)3 needs to be improved for high rate capability. In this work, porous NaTi2(PO4)3 nanocubes anchored on porous carbon nanosheets (NaTi2(PO4)3/C) are designed and developed. This material exhibits a large discharge capacity and good rate capacity including a first discharge capacity of 485 mAh g−1 at a current density of 0.1 A g−1, and 98 mAh g−1 retained at a high rate of 4 …


Investigation On The Catalytic Performance Of Reduced‐Graphene‐Oxide‐Interpolated Fes2 And Fes For Oxygen Reduction Reaction, Hengyi Fang, Taizhong Huang, Jianfeng Mao, Shuo Yao, M Dinesh, Yue Sun, Dong Liang, Lei Qi, Jiemei Yu, Zhankun Jiang Jan 2018

Investigation On The Catalytic Performance Of Reduced‐Graphene‐Oxide‐Interpolated Fes2 And Fes For Oxygen Reduction Reaction, Hengyi Fang, Taizhong Huang, Jianfeng Mao, Shuo Yao, M Dinesh, Yue Sun, Dong Liang, Lei Qi, Jiemei Yu, Zhankun Jiang

Australian Institute for Innovative Materials - Papers

The oxygen reduction reaction (ORR) plays a key role in many kinds of energy conversion and energy storage devices, especially in fuel cells. Developing low-cost, easily prepared, and high-efficiency catalysts is a crucial factor for the large-scale applications of fuel cells. Herein, we report the reduced graphene oxide (rGO) interpolated FeS2and FeS as low cost and high performance electrocatalyst for ORR in the alkaline electrolyte. Cyclic voltammetry tests indicate that the onset potential of the ORR for FeS2@rGO is −0.142 V, which is close to the state-of-the-art commercial Pt/C (-0.114 V) catalyst. A low Tafel slope of ∼ 98 mV/decade …