Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Approaches In Molecular Engineering To Optimize The Desired Properties Of Photoactive Molecules, Douglas Joseph Breen Apr 2022

Approaches In Molecular Engineering To Optimize The Desired Properties Of Photoactive Molecules, Douglas Joseph Breen

Chemistry and Chemical Biology ETDs

Within this dissertation, photochemical systems that bear significance to next-generation photonic materials and devices are explored. Notable advances in the design, synthesis, and characterization of three distinct groups of photoactive molecules are achieved through molecular design and spectroscopic analysis. First, novel ruthenium sulfoxide complexes bearing substituted phosphine ligands are found to provide extraordinary control over photoisomerization quantum yields. A comparison of these complexes reveals ground-state characteristics that are instrumental in this reactivity, while a novel spectroscopic technique provides rare structural evidence for an O-bonded metastable isomer. Ruthenium complexes bearing chelating carbene-sulfoxide ligands rapidly thermally revert from the O-bonded metastable isomer …


Ultrafast Spectroscopy Of Air Lasing In Filaments, Brian Robert Kamer Dec 2021

Ultrafast Spectroscopy Of Air Lasing In Filaments, Brian Robert Kamer

Optical Science and Engineering ETDs

Filamentation in air is a phenomenon that has been extensively investigated for the last two decades. At sufficiently high intensity, even air is a nonlinear medium. These intensities are reached with ultrashort pulses (50 to 100 fs) of more than 1 J energy, which self-focus in air, reach ionizing intensities of oxygen and nitrogen, creating a plasma that defocuses the beam. The air filament is a self-induced waveguide resulting from a balance of focusing and defocusing. In this work new techniques were developed to visualize and analyze this phenomenon through its emission, in particu- lar the UV emission of the …


The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr Nov 2021

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr

Nanoscience and Microsystems ETDs

Through-bond and through-space interactions between chromophores are shown to have wide-ranging effects on photophysical outcomes upon light absorption in organic molecules. In collapsed poly(3-hexylthiophene), through-space coupling creates hybrid chromophores that act as energy sinks for nearby excitons and favorable sites for molecular oxygen to dock. Upon excitation with visible light the highly-coupled chromophores react with the docked oxygen and subsequently do not quench nearby excitons as efficiently. In tetramer arrays of perylene diimide chromophores the central moiety through-bond connectivity is synthesized in two variants which exhibit vastly different single-molecule blinking behavior and theoretically-predicted electronic transition character. In the more-connected tetramer …


An Improved Method For Spectroscopic Quality Classification, Elizabeth G. Mayer Jul 2020

An Improved Method For Spectroscopic Quality Classification, Elizabeth G. Mayer

Mathematics & Statistics ETDs

Spectral quality classification is a vital step in data cleaning before the

analysis of magnetic resonance spectroscopy (MRS) data can be done. This

analysis compares five methods of quality classification; three of these are

legacy methods, Maudsley et al. (2006), Zhang et al. (2018), and

Bustillo et al. (2020), and two newly created methods that used a random forests

classifier (RFC) to inform their classifications. We found that the random forest

classifier was the most accurate at predicting spectra quality (balanced

accuracy for RF of 88% vs legacy of 70%, 72%, or 72%). A

Random-Forests-Informed Filtering method (RFIFM) for quality …


Organic/Inorganic Interfacial Interactions Affecting Metal Reactivity: Water Treatment And Sensor Applications, Mohamed Nabil Shaikh Aug 2019

Organic/Inorganic Interfacial Interactions Affecting Metal Reactivity: Water Treatment And Sensor Applications, Mohamed Nabil Shaikh

Civil Engineering ETDs

The aim of this dissertation was to investigate the interactions occurring at the organic – inorganic interface between solid media and aqueous contaminants for water treatment and sensor applications. The gaps in current literature on these interfacial organic-inorganic interactions must be bridged in order to develop advanced water treatment and monitoring technologies for improving water quality and thus, restore and protect the contaminated water resources. As a part of this dissertation, manganese oxides-based composites and electrospun polymer mats were developed and investigated for gaining mechanistic insights of organic (bisphenol A and acetaminophen) and inorganic (uranium) contaminants removal, respectively. These reactions …


Development Of Metallic Magnetic Calorimeters And Paramagnetic Alloys Of Ag And Er For Gamma-Ray Spectroscopy, Linh N. Le May 2018

Development Of Metallic Magnetic Calorimeters And Paramagnetic Alloys Of Ag And Er For Gamma-Ray Spectroscopy, Linh N. Le

Physics & Astronomy ETDs

A Metallic Magnetic Calorimeter (MMC) is a cryogenic calorimetric particle detector that employs a metallic paramagnetic alloy as the temperature sensor material. MMCs are used in many different applications, but this work will focus on their uses in high energy resolution gamma-ray spectroscopy. This technology is of great interest to the field of Nuclear Forensics and Nuclear Safeguards as a non-destructive assay for isotopic analysis of nuclear samples. The energy resolution of MMCs is an order of magnitude higher than the benchmark High Purity Germanium (HPGe) detectors that are currently used in the field and MMCs are also poised to …