Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nevada, Las Vegas

2018

Life Sciences

Life Sciences Faculty Research

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Linking Gait Dynamics To Mechanical Cost Of Legged Locomotion, David V. Lee, Sarah L. Harris Oct 2018

Linking Gait Dynamics To Mechanical Cost Of Legged Locomotion, David V. Lee, Sarah L. Harris

Life Sciences Faculty Research

For millenia, legged locomotion has been of central importance to humans for hunting, agriculture, transportation, sport, and warfare. Today, the same principal considerations of locomotor performance and economy apply to legged systems designed to serve, assist, or be worn by humans in urban and natural environments. Energy comes at a premium not only for animals, wherein suitably fast and economical gaits are selected through organic evolution, but also for legged robots that must carry sufficient energy in their batteries. Although a robot's energy is spent at many levels, from control systems to actuators, we suggest that the mechanical cost of …


Assessing Near Surface Hydrologic Processes And Plant Response Over A 1600 M Mountain Valley Gradient In The Great Basin, Nv, U.S.A., Dale Devitt, Brian Bird, Brad Lyles, Lynn Fenstermaker, Richard Jasoni, Scotty Strachan, Jay Arnone Iii, Franco Biondi, Scott Mensing, Laurel Saito Apr 2018

Assessing Near Surface Hydrologic Processes And Plant Response Over A 1600 M Mountain Valley Gradient In The Great Basin, Nv, U.S.A., Dale Devitt, Brian Bird, Brad Lyles, Lynn Fenstermaker, Richard Jasoni, Scotty Strachan, Jay Arnone Iii, Franco Biondi, Scott Mensing, Laurel Saito

Life Sciences Faculty Research

This study investigated near surface hydrologic processes and plant response over a 1600 m mountain-valley gradient located in the Great Basin of North America (Nevada, U.S.A.) as part of a long-term climate assessment study. The goal was to assess shifts in precipitation, soil water status and associated drainage with elevation and how this influenced evapotranspiration and plant cover/health estimated by a satellite-derived Normalized Difference Vegetation Index (NDVI), all to better understand how water is partitioned in a mountain valley system. Data were acquired during a three-year period from meteorological stations located in five plant communities ranging in elevation from 1756 …