Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nevada, Las Vegas

Series

Steel – Embrittlement

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2008

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The beneficial effects of Si on both the metallurgical and corrosion properties of Cr-Mo steels have previously been demonstrated at UNLV. Therefore, additions of Si ranging from 0.5-2.0 weight percent (wt%) was attempted in this investigation to explore Si effect on both the high temperature tensile properties and corrosion behavior of T91 grade steel. Corrosion studies in the presence of molten LBE could not be performed due to a lack of proper experimental facilities at UNLV. Therefore, detailed corrosion studies involving Si-containing T91 grade steels were performed in an aggressive aqueous solution of acidic pH. Further, significant efforts have been …


Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2007

Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is focused on the evaluation of the effects of silicon content on both the corrosion behavior and radiation-induced embrittlement of martensitic stainless steels having compositions similar to that of modified 9Cr-1Mo steel, also known as T91 grade steel. T91 grade steel was selected to be a candidate structural material to contain molten lead-bismuth eutectic (LBE), which can act both as a target material and a coolant during the spallation process. The operating temperature during this process may range from 420-550 °C. Thus, moderate tensile strength of the containment material (T91) is a major requirement.

The beneficial effects of …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2005 – January 2006), Ajit K. Roy Apr 2006

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2005 – January 2006), Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is intended to study the effect of Si content not only on the corrosion resistance but also on the radiation-induced embrittlement of martensitic stainless steels. The susceptibility of these alloys with different Si content to stress corrosion cracking, general corrosion and localized corrosion will be evaluated in the molten LBE and aqueous environments of different pH values using state-of-the-art testing techniques. Testing in the aqueous media is intended to develop baseline data for comparison purpose. Radiation-induced embrittlement of these alloys will initially be studied by irradiating the test specimens with bremmstrahlung gamma radiation from 20-40 MeV electron beams …


Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2006

Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is primarily focused on the evaluation of the effect of Si content on the susceptibility of modified 9Cr-1Mo-0.24V steel to stress corrosion cracking (SCC) and localized cracking in both molten lead-bismuth eutectic (LBE) and an aqueous solution of acidic pH.

Further, significant efforts are in progress to characterize the deformation mechanism of modified T91 grade steel as a function of temperature and strain rate. Simultaneously, surface analyses of the tested materials are ongoing using state-of-the-art techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM).


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (February – April 2005), Ajit K. Roy Jul 2005

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (February – April 2005), Ajit K. Roy

Transmutation Sciences Materials (TRP)

This proposal is intended to study the effect of Si content not only on the corrosion resistance but also on the radiation-induced embrittlement of martensitic stainless steels. The susceptibility of these alloys with different Si content to stress corrosion cracking, general corrosion and localized corrosion will be evaluated in the molten LBE and aqueous environments of different pH values using state-of-the-art testing techniques. Testing in the aqueous media is intended to develop baseline data for comparison purpose. Radiation-induced embrittlement of these alloys will initially be studied by irradiating the test specimens with bremmstrahlung gamma radiation from 20-40 MeV electron beams …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2004 – January 2005), Ajit K. Roy Apr 2005

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2004 – January 2005), Ajit K. Roy

Transmutation Sciences Materials (TRP)

This proposal is intended to study the effect of Si content not only on the corrosion resistance but also on the radiation-induced embrittlement of martensitic stainless steels. The susceptibility of these alloys with different Si content to stress corrosion cracking, general corrosion and localized corrosion will be evaluated in the molten LBE and aqueous environments of different pH values using state-of-the-art testing techniques. Testing in the aqueous media is intended to develop baseline data for comparison purpose. Radiation-induced embrittlement of these alloys will initially be studied by irradiating the test specimens with bremmstrahlung gamma radiation from 20-40 MeV electron beams …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (August 2004 – October 2004), Ajit K. Roy Jan 2005

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (August 2004 – October 2004), Ajit K. Roy

Transmutation Sciences Materials (TRP)

The purpose of this collaborative research project involving the University of Nevada Las Vegas (UNLV), Los Alamos National Laboratory (LANL) and Idaho State University (ISU) is to evaluate the effect of silicon (Si) content on the corrosion behavior and radiation-induced embrittlement of martensitic stainless steels having chemical compositions similar to that of the modified 9Cr-1Mo steel. Recent studies at LANL involving Alloy EP-823 of different Si content have demonstrated that increased Si content in this alloy may enhance the corrosion resistance in molten lead-bismutheutectic (LBE). Since very little data exists in the open literature on the beneficial effect of Si …


Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2005

Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is focused on the evaluation of the effect of Si content on the corrosion behavior and radiation-induced embrittlement of martensitic steels having chemical compositions similar to that of modified 9Cr-1Mo steel. Numerous state-of-the-art experimental techniques are currently being planned to be employed to achieve the desired research goal.


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy May 2004

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The purpose of this collaborative research project involving the University of Nevada Las Vegas (UNLV), Los Alamos National Laboratory (LANL) and Idaho State University (ISU) is to evaluate the effect of silicon (Si) content on the corrosion behavior and radiation-induced embrittlement of martensitic stainless steels having chemical compositions similar to that of the modified 9Cr-1Mo 2 steel. Recent studies at LANL involving Alloy EP-823 of different Si content have demonstrated that increased Si content in this alloy may enhance the corrosion resistance in molten lead-bismuth-eutectic (LBE). Since very little data exists in the open literature on the beneficial effect of …