Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nevada, Las Vegas

Series

Lake Mead (Ariz. and Nev.)

Soil Science

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

An Ecological Analysis Of Relic Diatoms In Sediments Of Las Vegas Bay, Lake Mead, David Ross Hetzel Jul 1982

An Ecological Analysis Of Relic Diatoms In Sediments Of Las Vegas Bay, Lake Mead, David Ross Hetzel

Publications (WR)

Relic diatoms in sediments of the inner Las Vegas Bay, near the Las Vegas Wash sewage inflow, were examined in order to assess historic trophic conditions in this area of Lake Mead. Diatom sedimentation rates and ratios of Araphidineae/Centrales (A/C) diatom groups were determined from sediment cores collected in the old wash channel 1.5 km from the sewage inflow (station 2), in a small cove 1.5 km further downstream (station 3) and in an adjacent embayment off Gypsum Wash (station 4). Diatom sedimentation rates generally increased from the bottom to the top of each core, but pronounced minima existed at …


Influence Of Las Vegas Wash Density Current On Nutrient Availability And Phytoplankton Growth In Lake Mead, John R. Baker, Larry J. Paulson Jun 1980

Influence Of Las Vegas Wash Density Current On Nutrient Availability And Phytoplankton Growth In Lake Mead, John R. Baker, Larry J. Paulson

Publications (WR)

Density currents are commonly formed in reservoirs because of temperature or salinity induced density differences between inflowing and receiving waters. Anderson and Pritchard (1951) were among the first to demonstrate this in their investigations of density currents in Lake Mead. They found that the Colorado River formed an underflow in Lake Mead during the winter, an overflow in the spring and an interflow in the summer and fall. Wunderlich and Elder (1973) have since described the hydromechanics of these types of flow patterns, and density currents have been reported for several other large reservoirs (Carmack et al. 1979, Johnson and …


The 1963-64 Lake Mead Survey, J. M. Lara, J. I. Sanders, Bureau Of Reclamation Aug 1970

The 1963-64 Lake Mead Survey, J. M. Lara, J. I. Sanders, Bureau Of Reclamation

Publications (WR)

The 1963-64 Lake Mead survey was run to compute the reservoir capacity. Results of the geodetic and hydrographic surveys and sediment sampling equipment are described. The geodetic survey showed Hoover Dam subsided an average of 118 mm since 1935. Sonic sounding, photogrammetry, and crosssectional profiling methods were used to run the hydrographic survey. Reservoir area and capacity tables were generated using an electronic computer. The present lake capacity is 29,755,000 acre-ft and the reservoir surface area is 162,700 acres at elevation 1229 ft. 2,720,000 acre-ft of sediments accumulated in the lake since 1935. A unit weight of 60 Ib/cu ft …


Water Chemistry Survey Of Boulder Basin, Lake Mead, P. R. Tramutt, Bureau Of Reclamation Jun 1965

Water Chemistry Survey Of Boulder Basin, Lake Mead, P. R. Tramutt, Bureau Of Reclamation

Publications (WR)

The survey results indicate that the impoundment of water behind Hoover Dam has not adversely affected the dissolved oxygen (DO) content and that water quality and DO content were uniform regardless of depth. The study made in April-May 1964 will provide water quality data of Lake Mead prior to releases from Lake Powell as a basis for evaluating Lake Powell's effect on water quality and limnology of Lake Mead. The performance of a DO analyzer was tested and found unsatisfactory at depths below 150 ft. Parameters tested by standard chemical analyses of water samples in the Denver Laboratory and by …