Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nevada, Las Vegas

Series

Physics

Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 341

Full-Text Articles in Physical Sciences and Mathematics

The High Pressure Dependence Of X-Ray Induced Decomposition Of Cadmium Oxalate, Adrian F. Lua Sanchez, Petrika Cifligu, Marc Graff, Michael Pravica, Pradip K. Bhowmik, Changyong Park, Egor Evlyukhin Oct 2023

The High Pressure Dependence Of X-Ray Induced Decomposition Of Cadmium Oxalate, Adrian F. Lua Sanchez, Petrika Cifligu, Marc Graff, Michael Pravica, Pradip K. Bhowmik, Changyong Park, Egor Evlyukhin

Physics & Astronomy Faculty Research

The high proclivity of x rays to destabilize and distort molecular structures has been previously utilized in the synthesis of novel compounds. Here, we show that x-ray induced decomposition of cadmium oxalate induces chemical and structural transformations only at 0.5 and 1 GPa. Using x-ray diffraction and Raman spectroscopy, the synthesized product is identified as cadmium carbonate with cadmium oxalate remnants, which is stable under ambient conditions. At ambient and >1 GPa pressures, only degradation of the electronic density distribution is observed. The transformation kinetics are examined in terms of Avrami’s model, which demonstrates that despite the necessity of high …


Dicationic Stilbazolium Salts: Structural, Thermal, Optical, And Ionic Conduction Properties, Pradip K. Bhowmik, Jung J. Koh, David King, Haesook Han, Benoît Heinrich, Bertrand Donnio, Daniel Zaton, Alfonso Martinez-Felipe Aug 2021

Dicationic Stilbazolium Salts: Structural, Thermal, Optical, And Ionic Conduction Properties, Pradip K. Bhowmik, Jung J. Koh, David King, Haesook Han, Benoît Heinrich, Bertrand Donnio, Daniel Zaton, Alfonso Martinez-Felipe

Chemistry and Biochemistry Faculty Research

Two series of new dicationic stilbazolium salts containing tosylate and triflimide counterions, respectively, were synthesized and characterized by spectroscopic techniques and elemental analysis. Despite of their promesogenic structures, none of these salts are mesomorphous, and instead they solely exhibit crystalline polymorphism, as deduced from differential scanning calorimetry, polarizing optical microscopy and variable temperature X-ray measurements. These salts were also found to be highly thermally stable with decomposition temperatures occurring well above 300 °C, and up to 367 °C for the triflimide salts, as determined by thermogravimetric analysis. UV–Vis absorption and photoluminescent properties were examined in both solution and in the …


Recovery Of High Specific Activity Molybdenum-99 From Accelerator-Induced Fission On Low-Enriched Uranium For Technetium-99m Generators, M. Alex Brown, Nathan Johnson, Artem V. Gelis, Milan Stika, Anna G. Servis, Alex Bakken, Christine Krizmanich, Kristin Shannon, Peter Kozak, Amanda Barnhart, Chad Denbrock, Nicolas Luciani, Terry Grimm, Peter Tkac Jun 2021

Recovery Of High Specific Activity Molybdenum-99 From Accelerator-Induced Fission On Low-Enriched Uranium For Technetium-99m Generators, M. Alex Brown, Nathan Johnson, Artem V. Gelis, Milan Stika, Anna G. Servis, Alex Bakken, Christine Krizmanich, Kristin Shannon, Peter Kozak, Amanda Barnhart, Chad Denbrock, Nicolas Luciani, Terry Grimm, Peter Tkac

Chemistry and Biochemistry Faculty Research

A new process was developed to recover high specific activity (no carrier added) 99Mo from electron-accelerator irradiated U3O8 or uranyl sulfate targets. The process leverages a novel solvent extraction scheme to recover Mo using di(2-ethylhexyl) phosphoric acid following uranium and transuranics removal with tri-n-butyl phosphate. An anion-exchange concentration column step provides a final purification, generating pure 99Mo intended for making 99Mo/99mTc generators. The process was demonstrated with irradiated uranium targets resulting in more than 95% 99Mo recovery and without presence of fission products or actinides in the product.


Β -Technetium: An Allotrope With A Nonstandard Volume-Pressure Relationship, Emily Siska, Dean Smith, Christian Childs, Daniel Koury, Paul M. Forster, Keith V. Lawler, Ashkan Salamat Jun 2021

Β -Technetium: An Allotrope With A Nonstandard Volume-Pressure Relationship, Emily Siska, Dean Smith, Christian Childs, Daniel Koury, Paul M. Forster, Keith V. Lawler, Ashkan Salamat

Chemistry and Biochemistry Faculty Research

We report the synthesis and structure of the second allotrope of technetium, β-Tc. Transformative pathways are accessed at extreme conditions using the laser-heated diamond anvil cell and confirmed with in situ synchrotron x-ray diffraction and Raman spectroscopy. β-Tc is fully recoverable to ambient conditions, although counter to our DFT calculations predicting a face-centered-cubic lattice, we observe a tetragonal structure (I4/mmm) that exhibits further tetragonal distortion with pressure. β-Tc has an expanded volume relative to the hcp ground state phase, that when doped with nitrogen has an unexpected volume lowering. Such anomalous behavior is possibly indicative of a rare electronic phase …


Colossal Density-Driven Resistance Response In The Negative Charge Transfer Insulator Mns2, Dylan Durkee, Nathan Dasenbrock-Gammon, G. Alexander Smith, Elliot Snider, Dean Smith, Christian Childs, Simon A.J. Kimber, Keith V. Lawler, Ranga P. Dias, Ashkan Salamat Jun 2021

Colossal Density-Driven Resistance Response In The Negative Charge Transfer Insulator Mns2, Dylan Durkee, Nathan Dasenbrock-Gammon, G. Alexander Smith, Elliot Snider, Dean Smith, Christian Childs, Simon A.J. Kimber, Keith V. Lawler, Ranga P. Dias, Ashkan Salamat

Chemistry and Biochemistry Faculty Research

A reversible density driven insulator to metal to insulator transition in high-spin MnS2 is experimentally observed, leading with a colossal electrical resistance drop of 108 ω by 12 GPa. Density functional theory simulations reveal the metallization to be unexpectedly driven by previously unoccupied S22- σ3p∗ antibonding states crossing the Fermi level. This is a unique variant of the charge transfer insulator to metal transition for negative charge transfer insulators having anions with an unsaturated valence. By 36 GPa the emergence of the low-spin insulating arsenopyrite (P21/c) is confirmed, and the bulk metallicity is broken with the system returning to an …


Control-Oriented Nonlinear Modeling Of Polyvinyl Chloride (Pvc) Gel Actuators, Mohammed Al-Rubaiai, Xinda Qi, Zachary Frank, Ryohei Tsuruta, Umesh Gandhi, Kwang J. Kim, Xiaobo Tan May 2021

Control-Oriented Nonlinear Modeling Of Polyvinyl Chloride (Pvc) Gel Actuators, Mohammed Al-Rubaiai, Xinda Qi, Zachary Frank, Ryohei Tsuruta, Umesh Gandhi, Kwang J. Kim, Xiaobo Tan

Mechanical Engineering Faculty Research

Polyvinyl chloride (PVC) gel-based actuators are a new class of soft, electroactive polymer actuators with several attractive properties, including low cost, large compliance, large strain output, high-stress output, fast response, and stability against thermal influence. While PVC gel actuators are quickly gaining attention, they remain largely unexplored despite their great potential in a long list of applications compared with many other smart material actuators. In particular, little work has been reported on modeling nonlinear dynamics of PVC actuators. In this work a nonlinear, control-oriented Hammerstein model, with a polynomial nonlinearity preceding a transfer function, is proposed to capture the amplitude-dependent …


Pressure- And Temperature-Dependent Inelastic Neutron Scattering Study Of The Phase Transition And Phonon Lattice Dynamics In Para-Terphenyl, Qingan Cai, Michael Mcintire, Luke L. Daemen, Chen Li, Eric Chronister Mar 2021

Pressure- And Temperature-Dependent Inelastic Neutron Scattering Study Of The Phase Transition And Phonon Lattice Dynamics In Para-Terphenyl, Qingan Cai, Michael Mcintire, Luke L. Daemen, Chen Li, Eric Chronister

Chemistry and Biochemistry Faculty Research

Inelastic neutron scattering has been performed on para-terphenyl at temperatures from 10 to 200 K and under pressures from the ambient pressure to 1.51 kbar. The temperature dependence of phonons, especially low-frequency librational bands, indicates strong anharmonic phonon dynamics. The pressure- and temperature-dependence of the phonon modes suggest a lack of phase transition in the region of 0-1.51 kbar and 10-30 K. Additionally, the overall lattice dynamics remains similar up to 200 K under the ambient pressure. The results suggest that the boundary between the ordered triclinic phase and the third solid phase, reported at lower temperatures and higher pressures, …


Computation And Data Driven Discovery Of Topological Phononic Materials, Jiangxu Li, Jiaxi Liu, Stanley A. Baronett, Mingfeng Liu, Lei Wang, Ronghan Li, Yun Chen, Dianzhong Li, Qiang Zhu, Xing Qiu Chen Feb 2021

Computation And Data Driven Discovery Of Topological Phononic Materials, Jiangxu Li, Jiaxi Liu, Stanley A. Baronett, Mingfeng Liu, Lei Wang, Ronghan Li, Yun Chen, Dianzhong Li, Qiang Zhu, Xing Qiu Chen

Physics & Astronomy Faculty Research

© 2021, The Author(s). The discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological phononics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 real materials. We have discovered 5014 TP materials and grouped them into two main classes of Weyl and nodal-line (ring) TPs. We have clarified the physical mechanism for the occurrence of single Weyl, high degenerate Weyl, individual nodal-line (ring), nodal-link, nodal-chain, …


Response Of The Mode Grüneisen Parameters With Anisotropic Compression: A Pressure And Temperature Dependent Raman Study Of Β-Sn, Jasmine K. Hinton, Christian Childs, Dean Smith, Paul B. Ellison, Keith V. Lawler, Ashkan Salamat Nov 2020

Response Of The Mode Grüneisen Parameters With Anisotropic Compression: A Pressure And Temperature Dependent Raman Study Of Β-Sn, Jasmine K. Hinton, Christian Childs, Dean Smith, Paul B. Ellison, Keith V. Lawler, Ashkan Salamat

Physics & Astronomy Faculty Research

The lattice dynamic response of body-centered tetragonal β−Sn (I41/amd) under high pressure and -temperature conditions is determined using experimental optical vibration modes. Raman scattering is used to map the phase stability region of β−Sn to perform mode Grüneisen analysis, and we demonstrate the necessity of an optical intensity calibration for Raman thermometry. The Grüneisen tensor is evaluated along a set of isotherms to address shortcomings of single-mode Grüneisen parameters with respect to anisotropic deformations of this tetragonal structured soft metal. The changes observed here in the Grüneisen tensor as a function of temperature are related to anharmonicity and denote potential …


Xenon Iron Oxides Predicted As Potential Xe Hosts In Earth’S Lower Mantle, Feng Peng, Xianqi Song, Chang Liu, Quan Li, Maosheng Miao, Changfeng Chen, Yanming Ma Oct 2020

Xenon Iron Oxides Predicted As Potential Xe Hosts In Earth’S Lower Mantle, Feng Peng, Xianqi Song, Chang Liu, Quan Li, Maosheng Miao, Changfeng Chen, Yanming Ma

Physics & Astronomy Faculty Research

An enduring geological mystery concerns the missing xenon problem, referring to the abnormally low concentration of xenon compared to other noble gases in Earth’s atmosphere. Identifying mantle minerals that can capture and stabilize xenon has been a great challenge in materials physics and xenon chemistry. Here, using an advanced crystal structure search algorithm in conjunction with first-principles calculations we find reactions of xenon with recently discovered iron peroxide FeO2, forming robust xenon-iron oxides Xe2FeO2 and XeFe3O6 with significant Xe-O bonding in a wide range of pressure-temperature conditions corresponding to vast regions in Earth’s lower mantle. Calculated mass density and sound …


Toughening A Superstrong Carbon Crystal: Sequential Bond-Breaking Mechanisms, Hui Liang, Hefei Li, Quan Li, Changfeng Chen Oct 2020

Toughening A Superstrong Carbon Crystal: Sequential Bond-Breaking Mechanisms, Hui Liang, Hefei Li, Quan Li, Changfeng Chen

Physics & Astronomy Faculty Research

A complex orthorhombic carbon allotrope in Pbam symmetry with 32 atoms in its unit cell, thus termed Pbam-32 carbon, was recently predicted [C. Y. He et al., Phys. Rev. Lett. 121, 175701 (2018)]. Its crystal structure comprises alternating fivefold, sixfold, and sevenfold carbon rings and exhibits reduced bonding anisotropy compared to diamond, raising the prospects of finding a superstrong material with distinct and favorable mechanical properties. Here we report findings from first-principles calculations that reveal peculiar stress-strain relations in Pbam-32 carbon. The obtained stress responses under various tensile and shear strains display outstanding characteristics contrasting those of traditional superhard materials …


Pressure-Stabilized Divalent Ozonide Cao3 And Its Impact On Earth’S Oxygen Cycles, Yanchao Wang, Meiling Xu, Liuxiang Yang, Bingmin Yan, Qin Qin, Xuecheng Shao, Yunwei Zhang, Dajian Huang, Xiaohuan Lin, Jian Lv, Dongzhou Zhang, Huiyang Gou, Ho-Kwang Mao, Changfeng Chen, Yanming Ma Sep 2020

Pressure-Stabilized Divalent Ozonide Cao3 And Its Impact On Earth’S Oxygen Cycles, Yanchao Wang, Meiling Xu, Liuxiang Yang, Bingmin Yan, Qin Qin, Xuecheng Shao, Yunwei Zhang, Dajian Huang, Xiaohuan Lin, Jian Lv, Dongzhou Zhang, Huiyang Gou, Ho-Kwang Mao, Changfeng Chen, Yanming Ma

Physics & Astronomy Faculty Research

High pressure can drastically alter chemical bonding and produce exotic compounds that defy conventional wisdom. Especially significant are compounds pertaining to oxygen cycles inside Earth, which hold key to understanding major geological events that impact the environment essential to life on Earth. Here we report the discovery of pressure-stabilized divalent ozonide CaO3 crystal that exhibits intriguing bonding and oxidation states with profound geological implications. Our computational study identifies a crystalline phase of CaO3 by reaction of CaO and O2 at high pressure and high temperature conditions; ensuing experiments synthesize this rare compound under compression in a diamond anvil cell with …


Machine Learning Corrected Quantum Dynamics Calculations, A. Jasinski, J. Montaner, R. C. Forrey, B. H. Yang, P. C. Stancil, Naduvalath Balakrishnan, J. Dai, A. Vargas-Hernandez, R. V. Krems Aug 2020

Machine Learning Corrected Quantum Dynamics Calculations, A. Jasinski, J. Montaner, R. C. Forrey, B. H. Yang, P. C. Stancil, Naduvalath Balakrishnan, J. Dai, A. Vargas-Hernandez, R. V. Krems

Chemistry and Biochemistry Faculty Research

Quantum scattering calculations for all but low-dimensional systems at low energies must rely on approximations. All approximations introduce errors. The impact of these errors is often difficult to assess because they depend on the Hamiltonian parameters and the particular observable under study. Here, we illustrate a general, system- and approximation-independent, approach to improve the accuracy of quantum dynamics approximations. The method is based on a Bayesian machine learning (BML) algorithm that is trained by a small number of exact results and a large number of approximate calculations, resulting in ML models that can generalize exact quantum results to different dynamical …


Non-Adiabatic Quantum Dynamics Of The Ultracold Li+Lina→ Li2+Na Chemical Reaction, B. K. Kendrick, M. Li, H. Li, S. Kotochigova, J. F.E. Croft, Balakrishnan Naduvalath Jun 2020

Non-Adiabatic Quantum Dynamics Of The Ultracold Li+Lina→ Li2+Na Chemical Reaction, B. K. Kendrick, M. Li, H. Li, S. Kotochigova, J. F.E. Croft, Balakrishnan Naduvalath

Chemistry and Biochemistry Faculty Research

We report non-adiabatic dynamics of the Li+LiNa→Li2+Na chemical reaction at cold and ultracold temperatures employing accurate ab initio electronic potential energy surfaces in a quantum dynamics formulation employing a diabatic representation. Results are compared against those from a single adiabatic ground state potential energy surface and a universal model based on the long-range interaction potential. We discuss signatures of non-universal behavior in the total rate coefficients as well as strong non-adiabatic effects in the state-to-state rotationally resolved rate coefficients.


On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young Apr 2020

On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young

Physics & Astronomy Faculty Research

The efficient modulation and control of ultrafast signals on-chip is of central importance in terahertz (THz) communications and a promis- ing route toward sub-diffraction limit THz spectroscopy. Two-dimensional (2D) materials may provide a platform for these endeavors. We explore this potential, integrating high-quality graphene p–n junctions within two types of planar transmission line circuits to modulate and emit picosecond pulses. In a coplanar strip line geometry, we demonstrate the electrical modulation of THz signal transmission by 95%. In a Goubau waveguide geometry, we achieve complete gate-tunable control over THz emission from a photoexcited graphene junction. These studies inform the development …


Vibration Overtone Hyperpolarizability Measured For H2, Rachel M. Ellis, David P. Shelton Apr 2020

Vibration Overtone Hyperpolarizability Measured For H2, Rachel M. Ellis, David P. Shelton

Physics & Astronomy Faculty Research

The second hyperpolarizability (γ) of the H2 molecule was measured by gas-phase electric field induced second harmonic generation at the frequencies of the one-photon resonance for the 3–0 Q(J) overtone transitions (v, J = 0, J → 3, J for J = 0, 1, 2, and 3). The magnitude of the resonant contribution to γ was measured with 2% accuracy using the previously determined non-resonant γ for calibration. Pressure broadening and frequency shift for the transitions were also measured. A theoretical expression for the resonant vibrational γ contribution in terms of transition polarizabilities is compared to the observations. The measured …


Superconductivity In Compression-Shear Deformed Diamond, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen Apr 2020

Superconductivity In Compression-Shear Deformed Diamond, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen

Physics & Astronomy Faculty Research

Diamond is a prototypical ultrawide band gap semiconductor, but turns into a superconductor with a critical temperature Tc≈4 K near 3% boron doping [E. A. Ekimov et al., Nature (London) 428, 542 (2004)]. Here we unveil a surprising new route to superconductivity in undoped diamond by compression-shear deformation that induces increasing metallization and lattice softening with rising strain, producing phonon mediated Tc up to 2.4–12.4 K for a wide range of Coulomb pseudopotential μ∗=0.15–0.05. This finding raises intriguing prospects of generating robust superconductivity in strained diamond crystal, showcasing a distinct and hitherto little explored approach to driving materials into superconducting …


The Breakup Of A Helium Cluster After Removing Attractive Interaction Among A Significant Number Of Atoms In The Cluster, Tao Pang Apr 2020

The Breakup Of A Helium Cluster After Removing Attractive Interaction Among A Significant Number Of Atoms In The Cluster, Tao Pang

Physics & Astronomy Faculty Research

The breakup of a quantum liquid droplet is examined through a 4He cluster by removing the attractive tail in the interaction between some of the atoms in the system with the diffusion quantum Monte Carlo simulation. The ground-state energy, kinetic energy, cluster size, and density profile of the cluster are evaluated against the percentage of the atoms without the attractive tail. The condition for the cluster to lose its ability to form a quantum liquid droplet at zero temperature is found and analyzed. The cluster is no longer able to form a quantum liquid droplet when about two-thirds of pairs …


High Dielectric Ternary Oxides From Crystal Structure Prediction And High-Throughput Screening, Jingyu Qu, David Zagaceta, Weiwei Zhang, Qiang Zhu Mar 2020

High Dielectric Ternary Oxides From Crystal Structure Prediction And High-Throughput Screening, Jingyu Qu, David Zagaceta, Weiwei Zhang, Qiang Zhu

Physics & Astronomy Faculty Research

The development of new high dielectric materials is essential for advancement in modern electronics. Oxides are generally regarded as the most promising class of high dielectric materials for industrial applications as they possess both high dielectric constants and large band gaps. Most previous researches on high dielectrics were limited to already known materials. In this study, we conducted an extensive search for high dielectrics over a set of ternary oxides by combining crystal structure prediction and density functional perturbation theory calculations. From this search, we adopted multiple stage screening to identify 441 new low-energy high dielectric materials. Among these materials, …


Author Correction: Closing The Nuclear Fuel Cycle With A Simplified Minor Actinide Lanthanide Separation Process (Alsep) And Additive Manufacturing, Artem V. Gelis, Peter Kozak, Andrew T. Breshears, M. Alex Brown, Cari Launiere, Emily L. Campbell, Gabriel B. Hall, Tatiana G. Levitskaia, Vanessa E. Holfeltz, Gregg J. Lumetta Jan 2020

Author Correction: Closing The Nuclear Fuel Cycle With A Simplified Minor Actinide Lanthanide Separation Process (Alsep) And Additive Manufacturing, Artem V. Gelis, Peter Kozak, Andrew T. Breshears, M. Alex Brown, Cari Launiere, Emily L. Campbell, Gabriel B. Hall, Tatiana G. Levitskaia, Vanessa E. Holfeltz, Gregg J. Lumetta

Chemistry and Biochemistry Faculty Research

No abstract provided.


Buckling Of Blue Phosphorus Nanotubes Under Axial Compression: Insights From Molecular Dynamics Simulations, Shiping Jiang, Huiling Wu, Liangzhi Kou, Chun Tang, Chengyuan Wang, Changfeng Chen Jan 2020

Buckling Of Blue Phosphorus Nanotubes Under Axial Compression: Insights From Molecular Dynamics Simulations, Shiping Jiang, Huiling Wu, Liangzhi Kou, Chun Tang, Chengyuan Wang, Changfeng Chen

Physics & Astronomy Faculty Research

We report on mechanical properties of blue phosphorus nanotubes (BluePNTs) from systematic molecular dynamics simulations, adopting a Stillinger-Weber potential with parameters determined by fitting to energetic and structural data from first-principles calculations. Our results corroborate the previously reported bending poison effect and size-dependent buckling behaviors. Under axial compression, current simulations predict a shell-to-column buckling mode transition for BluePNTs with increasing aspect ratios; further compression of BluePNTs with large aspect ratios results in a column-to-shell buckling mode transition. Associated critical buckling strains can be described by the continuum mechanics theory. We also simulated buckling behavior of black phosphorus nanotubes (BlackPNTs) and …


First-Principles Study Of High-Pressure Phase Stability And Superconductivity Of Bi4i4, Shiyu Deng, Xianqi Song, Quan Li, Yu Xie, Changfeng Chen, Yanming Ma Dec 2019

First-Principles Study Of High-Pressure Phase Stability And Superconductivity Of Bi4i4, Shiyu Deng, Xianqi Song, Quan Li, Yu Xie, Changfeng Chen, Yanming Ma

Physics & Astronomy Faculty Research

Bismuth iodide Bi4I4 exhibits intricate crystal structures and topological insulating states that are highly susceptible to influence by environments, making its physical properties highly tunable by external conditions. In this work, we study the evolution of structural and electronic properties of Bi4I4 at high pressure using an advanced structure search method in conjunction with first-principles calculations. Our results indicate that the most stable ambient-pressure monoclinic α−Bi4I4 phase in C2/m symmetry transforms to a trigonal P31c structure (ɛ−Bi4I4) at 8.4 GPa, then to a tetragonal P4/mmm structure (ζ−Bi4I4) above 16.6 GPa. In contrast to the semiconducting nature of ambient-pressure Bi4I4, the …


Smooth Flow In Diamond: Atomistic Ductility And Electronic Conductivity, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen Nov 2019

Smooth Flow In Diamond: Atomistic Ductility And Electronic Conductivity, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen

Physics & Astronomy Faculty Research

Diamond is the quintessential superhard material widely known for its stiff and brittle nature and large electronic band gap. In stark contrast to these established benchmarks, our first-principles studies unveil surprising intrinsic structural ductility and electronic conductivity in diamond under coexisting large shear and compressive strains. These complex loading conditions impede brittle fracture modes and promote atomistic ductility, triggering rare smooth plastic flow in the normally rigid diamond crystal. This extraordinary structural change induces a concomitant band gap closure, enabling smooth charge flow in deformation created conducting channels. These startling soft-and-conducting modes reveal unprecedented fundamental characteristics of diamond, with profound …


Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu Sep 2019

Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu

Physics & Astronomy Faculty Research

We revisit the Internal-Collision-induced MAgnetic Reconnection and Turbulence model of gamma-ray bursts (GRBs) in view of the advances made in understanding of both relativistic magnetic turbulence and relativistic turbulent magnetic reconnection. We identify the kink instability as the most natural way of changing the magnetic configuration to release the magnetic free energy through magnetic reconnection, as well as driving turbulence that enables fast turbulent reconnection. We show that this double role of the kink instability is important for explaining the prompt emission of GRBs. Our study confirms the critical role that turbulence plays in boosting reconnection efficiency in GRBs and …


Closing The Nuclear Fuel Cycle With A Simplified Minor Actinide Lanthanide Separation Process (Alsep) And Additive Manufacturing, Artem V. Gelis, Peter Kozak, Andrew T. Breshears, M. Alex Brown, Cari Launiere, Emily L. Campbell, Gabreil B. Hall, Tatiana G. Levitskaia, Vanessa E. Holfeltz, Gregg J. Lumetta Sep 2019

Closing The Nuclear Fuel Cycle With A Simplified Minor Actinide Lanthanide Separation Process (Alsep) And Additive Manufacturing, Artem V. Gelis, Peter Kozak, Andrew T. Breshears, M. Alex Brown, Cari Launiere, Emily L. Campbell, Gabreil B. Hall, Tatiana G. Levitskaia, Vanessa E. Holfeltz, Gregg J. Lumetta

Chemistry and Biochemistry Faculty Research

Expanded low-carbon baseload power production through the use of nuclear fission can be enabled by recycling long-lived actinide isotopes within the nuclear fuel cycle. This approach provides the benefits of (a) more completely utilizing the energy potential of mined uranium, (b) reducing the footprint of nuclear geological repositories, and (c) reducing the time required for the radiotoxicity of the disposed waste to decrease to the level of uranium ore from one hundred thousand years to a few hundred years. A key step in achieving this goal is the separation of long-lived isotopes of americium (Am) and curium (Cm) for recycle …


Probing The Direct Factor For Superconductivity In Fese-Based Superconductors By Raman Scattering, Animin Zhang, Xiaoli Ma, Yimeng Wang, Shanshan Sun, Bin Lei, Hechang Lei, Xianhui Chen, Xiaoqun Wang, Changfeng Chen, Qingming Zhang Aug 2019

Probing The Direct Factor For Superconductivity In Fese-Based Superconductors By Raman Scattering, Animin Zhang, Xiaoli Ma, Yimeng Wang, Shanshan Sun, Bin Lei, Hechang Lei, Xianhui Chen, Xiaoqun Wang, Changfeng Chen, Qingming Zhang

Physics & Astronomy Faculty Research

The FeSe-based superconductors exhibit a wide range of critical temperature Tcunder a variety of material and physical conditions, but extensive studies to date have yet to produce a consensus view on the underlying mechanism. Here we report on a systematic Raman-scattering work on intercalated FeSe superconductors Lix(NH3)yFe2Se2 and (Li,Fe)OHFeSe compared to pristine FeSe. All three crystals show an anomalous power-law temperature dependence of phonon linewidths, deviating from the standard anharmonic behavior. This intriguing phenomenon is attributed to electron-phonon coupling effects enhanced by electron correlation, as evidenced by the evolution of the A1g Raman mode. Meanwhile, an analysis of the B1g …


Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz Jul 2019

Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz

Chemistry and Biochemistry Faculty Research

Cold collisions of light molecules are often dominated by a single partial wave resonance. For the rotational quenching of HD (v=1, j=2) by collisions with ground state para-H2, the process is dominated by a single L=2 partial wave resonance centered around 0.1 K. Here, we show that this resonance can be switched on or off simply by appropriate alignment of the HD rotational angular momentum relative to the initial velocity vector, thereby enabling complete control of the collision outcome.


The Delay Time Of Gravitational Wave — Gamma-Ray Burst Associations, Bing Zhang Jul 2019

The Delay Time Of Gravitational Wave — Gamma-Ray Burst Associations, Bing Zhang

Physics & Astronomy Faculty Research

The first gravitational wave (GW) — gamma-ray burst (GRB) association, GW170817/GRB 170817A, had an offset in time, with the GRB trigger time delayed by ∼1.7 s with respect to the merger time of the GW signal. We generally discuss the astrophysical origin of the delay time, Δt, of GW-GRB associations within the context of compact binary coalescence (CBC) — short GRB (sGRB) associations and GW burst — long GRB (lGRB) associations. In general, the delay time should include three terms, the time to launch a clean (relativistic) jet, Δtjet; the time for the jet to break out from the surrounding …


A Comprehensive Assessment Of The Low-Temperature Thermal Properties And Thermodynamic Functions Of Ceo2, Tyler D. Morrison, Elizabeth Sooby Wood, Phillippe F. Weck, Eunja Kim, Sung Oh Woo, Andrew T. Nelson, Donald G. Naugle Jul 2019

A Comprehensive Assessment Of The Low-Temperature Thermal Properties And Thermodynamic Functions Of Ceo2, Tyler D. Morrison, Elizabeth Sooby Wood, Phillippe F. Weck, Eunja Kim, Sung Oh Woo, Andrew T. Nelson, Donald G. Naugle

Physics & Astronomy Faculty Research

Reported is an experimental and computational investigation of the low temperature heat capacity, thermodynamic functions, and thermal conductivity of stoichiometric, polycrystalline CeO2. The experimentally measured heat capacity at T... (See full abstract in article).


Topological Nodal Line Semimetals In Graphene Network Structures, Jian-Tao Wang, Hongming Weng, Chengfeng Chen Jul 2019

Topological Nodal Line Semimetals In Graphene Network Structures, Jian-Tao Wang, Hongming Weng, Chengfeng Chen

Physics & Astronomy Faculty Research

Topological semimetals are a fascinating class of quantum materials that possess extraordinary electronic and transport properties. These materials have attracted great interests in recent years for their fundamental significance and potential device applications. There have been intensive studies suggested that three-dimensional graphene networks support topological semimetals with two types of continuous nodal lines: one is to form closed nodal rings in Brillouin zone and the other ones traversing the whole Brillouin zone to be periodically connected. Carbon has negligible spin-orbit coupling, non-magnetism and great diversity of allotropes, which makes it very promising in realizing topological nodal line semimetals. Here we …