Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Consequences Of More Extreme Precipitation Regimes For Terrestrial Ecosystems, S. D. Smith, C. Beier, Aimee T. Classen, Melinda D. Smith, Jana L. Heisler, S. W. Leavitt, Alan K. Knapp, D. Briske, Y. Luo, M. Reichstein, J. E. Bell, Philip A. Fay, R. Sherry, Benjamin Smith Oct 2008

Consequences Of More Extreme Precipitation Regimes For Terrestrial Ecosystems, S. D. Smith, C. Beier, Aimee T. Classen, Melinda D. Smith, Jana L. Heisler, S. W. Leavitt, Alan K. Knapp, D. Briske, Y. Luo, M. Reichstein, J. E. Bell, Philip A. Fay, R. Sherry, Benjamin Smith

Life Sciences Faculty Research

Amplification of the hydrological cycle as a consequence of global warming is forecast to lead to more extreme intra-annual precipitation regimes characterized by larger rainfall events and longer intervals between events. We present a conceptual framework, based on past investigations and ecological theory, for predicting the consequences of this underappreciated aspect of climate change. We consider a broad range of terrestrial ecosystems that vary in their overall water balance. More extreme rainfall regimes are expected to increase the duration and severity of soil water stress in mesic ecosystems as intervals between rainfall events increase. In contrast, xeric ecosystems may exhibit …


Monitoring Temporal Change In Riparian Vegetation Of Great Basin National Park, E. A. Beever, D. A. Pyke, J. C. Chambers, F. Landau, S. D. Smith, K. Murray Jan 2005

Monitoring Temporal Change In Riparian Vegetation Of Great Basin National Park, E. A. Beever, D. A. Pyke, J. C. Chambers, F. Landau, S. D. Smith, K. Murray

Life Sciences Faculty Research

Disturbance in riparian areas of semiarid ecosystems involves complex interactions of pulsed hydrologic flows, herbivory, fire, climatic effects, and anthropogenic influences. We resampled riparian vegetation within ten 10-m × 100-m plots that were initially sampled in 1992 in 4 watersheds of the Snake Range, east central Nevada. Our finding of significantly lower coverage of grasses, forbs, and shrubs within plots in 2001 compared with 1992 was not consistent with the management decision to remove livestock grazing from the watersheds in 1999. Change over time in cover of life-forms or bare ground was not predicted by scat counts within plots in …