Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nevada, Las Vegas

Series

Computer Sciences

Amino Acid Motifs

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Minimotif Miner 3.0: Database Expansion And Significantly Improved Reduction Of False-Positive Predictions From Consensus Sequences., Tian Mi, Jerlin Camilus Merlin, Sandeep Deverasetty, Michael R. Gryk, Travis J. Bill, Andrew W. Brooks, Logan Lee, Viraj Rathnayake, Christian A. Ross, David P. Sargeant, Christy L. Strong, Paula Watts, Sanguthevar Rajasekaran, Martin Schiller Jan 2012

Minimotif Miner 3.0: Database Expansion And Significantly Improved Reduction Of False-Positive Predictions From Consensus Sequences., Tian Mi, Jerlin Camilus Merlin, Sandeep Deverasetty, Michael R. Gryk, Travis J. Bill, Andrew W. Brooks, Logan Lee, Viraj Rathnayake, Christian A. Ross, David P. Sargeant, Christy L. Strong, Paula Watts, Sanguthevar Rajasekaran, Martin Schiller

Life Sciences Faculty Research

Minimotif Miner (MnM available at http://minimotifminer.org or http://mnm.engr.uconn.edu) is an online database for identifying new minimotifs in protein queries. Minimotifs are short contiguous peptide sequences that have a known function in at least one protein. Here we report the third release of the MnM database which has now grown 60-fold to approximately 300,000 minimotifs. Since short minimotifs are by their nature not very complex we also summarize a new set of false-positive filters and linear regression scoring that vastly enhance minimotif prediction accuracy on a test data set. This online database can be used to predict new functions in proteins …


Partitioning Of Minimotifs Based On Function With Improved Prediction Accuracy, Sanguthevar Rajasekaran, Tian Mi, Jerlin Camilus Merlin, Aaron Oommen, Patrick R. Gradie, Martin R. Schiller Apr 2010

Partitioning Of Minimotifs Based On Function With Improved Prediction Accuracy, Sanguthevar Rajasekaran, Tian Mi, Jerlin Camilus Merlin, Aaron Oommen, Patrick R. Gradie, Martin R. Schiller

Life Sciences Faculty Research

Background

Minimotifs are short contiguous peptide sequences in proteins that are known to have a function in at least one other protein. One of the principal limitations in minimotif prediction is that false positives limit the usefulness of this approach. As a step toward resolving this problem we have built, implemented, and tested a new data-driven algorithm that reduces false-positive predictions.

Methodology/Principal Findings

Certain domains and minimotifs are known to be strongly associated with a known cellular process or molecular function. Therefore, we hypothesized that by restricting minimotif predictions to those where the minimotif containing protein and target protein have …


A Proposed Syntax For Minimotif Semantics, Version 1., Jay Vyas, Ronald J. Nowling, Mark W. Maciejewski, Sanguthevar Rajasekaran, Michael R. Gryk, Martin R. Schiller Aug 2009

A Proposed Syntax For Minimotif Semantics, Version 1., Jay Vyas, Ronald J. Nowling, Mark W. Maciejewski, Sanguthevar Rajasekaran, Michael R. Gryk, Martin R. Schiller

Life Sciences Faculty Research

BACKGROUND:

One of the most important developments in bioinformatics over the past few decades has been the observation that short linear peptide sequences (minimotifs) mediate many classes of cellular functions such as protein-protein interactions, molecular trafficking and post-translational modifications. As both the creators and curators of a database which catalogues minimotifs, Minimotif Miner, the authors have a unique perspective on the commonalities of the many functional roles of minimotifs. There is an obvious usefulness in standardizing functional annotations both in allowing for the facile exchange of data between various bioinformatics resources, as well as the internal clustering of sets of …