Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Physical Sciences and Mathematics

Pyxtal_Ff: A Python Library For Automated Force Field Generation, Howard Yanxon, David Zagaceta, Binh Tang, David S. Matteson, Qiang Zhu Dec 2020

Pyxtal_Ff: A Python Library For Automated Force Field Generation, Howard Yanxon, David Zagaceta, Binh Tang, David S. Matteson, Qiang Zhu

Physics & Astronomy Faculty Research

We present PyXtal_FF—a package based on Python programming language—for developing machine learning potentials (MLPs). The aim of PyXtal_FF is to promote the application of atomistic simulations through providing several choices of atom-centered descriptors and machine learning regressions in one platform. Based on the given choice of descriptors (including the atom-centered symmetry functions, embedded atom density, SO4 bispectrum, and smooth SO3 power spectrum), PyXtal_FF can train MLPs with either generalized linear regression or neural network models, by simultaneously minimizing the errors of energy/forces/stress tensors in comparison with the data from ab-initio simulations. The trained MLP model from PyXtal_FF is interfaced with …


Response Of The Mode Grüneisen Parameters With Anisotropic Compression: A Pressure And Temperature Dependent Raman Study Of Β-Sn, Jasmine K. Hinton, Christian Childs, Dean Smith, Paul B. Ellison, Keith V. Lawler, Ashkan Salamat Nov 2020

Response Of The Mode Grüneisen Parameters With Anisotropic Compression: A Pressure And Temperature Dependent Raman Study Of Β-Sn, Jasmine K. Hinton, Christian Childs, Dean Smith, Paul B. Ellison, Keith V. Lawler, Ashkan Salamat

Physics & Astronomy Faculty Research

The lattice dynamic response of body-centered tetragonal β−Sn (I41/amd) under high pressure and -temperature conditions is determined using experimental optical vibration modes. Raman scattering is used to map the phase stability region of β−Sn to perform mode Grüneisen analysis, and we demonstrate the necessity of an optical intensity calibration for Raman thermometry. The Grüneisen tensor is evaluated along a set of isotherms to address shortcomings of single-mode Grüneisen parameters with respect to anisotropic deformations of this tetragonal structured soft metal. The changes observed here in the Grüneisen tensor as a function of temperature are related to anharmonicity and denote potential …


The Evolution Of A Circumplanetary Disc With A Dead Zone, Cheng Chen, Chao Chin Yang, Rebecca G. Martin, Zhaohuan Zhu Nov 2020

The Evolution Of A Circumplanetary Disc With A Dead Zone, Cheng Chen, Chao Chin Yang, Rebecca G. Martin, Zhaohuan Zhu

Physics & Astronomy Faculty Research

© 2021 Oxford University Press. All rights reserved. We investigate whether the regular Galilean satellites could have formed in the dead zone of a circumplanetary disc. A dead zone is a region of weak turbulence in which the magnetorotational instability is suppressed, potentially an ideal environment for satellite formation. With the grid-based hydrodynamic code FARGO3D, we examine the evolution of a circumplanetary disc model with a dead zone. Material accumulates in the dead zone of the disc leading to a higher total mass and but a similar temperature profile compared to a fully turbulent disc model. The tidal torque increases …


Xenon Iron Oxides Predicted As Potential Xe Hosts In Earth’S Lower Mantle, Feng Peng, Xianqi Song, Chang Liu, Quan Li, Maosheng Miao, Changfeng Chen, Yanming Ma Oct 2020

Xenon Iron Oxides Predicted As Potential Xe Hosts In Earth’S Lower Mantle, Feng Peng, Xianqi Song, Chang Liu, Quan Li, Maosheng Miao, Changfeng Chen, Yanming Ma

Physics & Astronomy Faculty Research

An enduring geological mystery concerns the missing xenon problem, referring to the abnormally low concentration of xenon compared to other noble gases in Earth’s atmosphere. Identifying mantle minerals that can capture and stabilize xenon has been a great challenge in materials physics and xenon chemistry. Here, using an advanced crystal structure search algorithm in conjunction with first-principles calculations we find reactions of xenon with recently discovered iron peroxide FeO2, forming robust xenon-iron oxides Xe2FeO2 and XeFe3O6 with significant Xe-O bonding in a wide range of pressure-temperature conditions corresponding to vast regions in Earth’s lower mantle. Calculated mass density and sound …


Toughening A Superstrong Carbon Crystal: Sequential Bond-Breaking Mechanisms, Hui Liang, Hefei Li, Quan Li, Changfeng Chen Oct 2020

Toughening A Superstrong Carbon Crystal: Sequential Bond-Breaking Mechanisms, Hui Liang, Hefei Li, Quan Li, Changfeng Chen

Physics & Astronomy Faculty Research

A complex orthorhombic carbon allotrope in Pbam symmetry with 32 atoms in its unit cell, thus termed Pbam-32 carbon, was recently predicted [C. Y. He et al., Phys. Rev. Lett. 121, 175701 (2018)]. Its crystal structure comprises alternating fivefold, sixfold, and sevenfold carbon rings and exhibits reduced bonding anisotropy compared to diamond, raising the prospects of finding a superstrong material with distinct and favorable mechanical properties. Here we report findings from first-principles calculations that reveal peculiar stress-strain relations in Pbam-32 carbon. The obtained stress responses under various tensile and shear strains display outstanding characteristics contrasting those of traditional superhard materials …


Pressure-Stabilized Divalent Ozonide Cao3 And Its Impact On Earth’S Oxygen Cycles, Yanchao Wang, Meiling Xu, Liuxiang Yang, Bingmin Yan, Qin Qin, Xuecheng Shao, Yunwei Zhang, Dajian Huang, Xiaohuan Lin, Jian Lv, Dongzhou Zhang, Huiyang Gou, Ho-Kwang Mao, Changfeng Chen, Yanming Ma Sep 2020

Pressure-Stabilized Divalent Ozonide Cao3 And Its Impact On Earth’S Oxygen Cycles, Yanchao Wang, Meiling Xu, Liuxiang Yang, Bingmin Yan, Qin Qin, Xuecheng Shao, Yunwei Zhang, Dajian Huang, Xiaohuan Lin, Jian Lv, Dongzhou Zhang, Huiyang Gou, Ho-Kwang Mao, Changfeng Chen, Yanming Ma

Physics & Astronomy Faculty Research

High pressure can drastically alter chemical bonding and produce exotic compounds that defy conventional wisdom. Especially significant are compounds pertaining to oxygen cycles inside Earth, which hold key to understanding major geological events that impact the environment essential to life on Earth. Here we report the discovery of pressure-stabilized divalent ozonide CaO3 crystal that exhibits intriguing bonding and oxidation states with profound geological implications. Our computational study identifies a crystalline phase of CaO3 by reaction of CaO and O2 at high pressure and high temperature conditions; ensuing experiments synthesize this rare compound under compression in a diamond anvil cell with …


Probing The Intergalactic Turbulence With Fast Radio Bursts, Siyao Xu, Bing Zhang Jul 2020

Probing The Intergalactic Turbulence With Fast Radio Bursts, Siyao Xu, Bing Zhang

Physics & Astronomy Faculty Research

The turbulence in the diffuse intergalactic medium (IGM) plays an important role in various astrophysical processes across cosmic time, but it is very challenging to constrain its statistical properties both observationally and numerically. Via the statistical analysis of turbulence along different sight lines toward a population of fast radio bursts (FRBs), we demonstrate that FRBs provide a unique tool to probe the intergalactic turbulence. We measure the structure function (SF) of dispersion measures (DMs) of FRBs to study the multiscale electron density fluctuations induced by the intergalactic turbulence. The SF has a large amplitude and a Kolmogorov power-law scaling with …


A Mildly Relativistic Outflow From The Energentic, Fast-Rising Blue Optical Transient Css161010 In A Dwarf Galaxy, Deanne L. Coppejans, R. Margutti, G. Terreran, A. J. Nayana, E. R. Coughlin, T. Laskar, K. D. Alexander, M. Bietenholz, D. Caprioli, P. Chandra, M. R. Drout, D. Frederiks, C. Frohmaier, K. H. Hurley, C. S. Kochanek, M. Macleod, A. Meisner, P. E. Nugent, A. Ridnaia, D. J. Sand, D. Svinkin, C. Ward, S. Yang, A. Baldeschi, I. V. Chilingarian, Y. Dong, C. Esquivia, W. Fong, C. Guidorzi, P. Lundqvist, D. Milisavljevic May 2020

A Mildly Relativistic Outflow From The Energentic, Fast-Rising Blue Optical Transient Css161010 In A Dwarf Galaxy, Deanne L. Coppejans, R. Margutti, G. Terreran, A. J. Nayana, E. R. Coughlin, T. Laskar, K. D. Alexander, M. Bietenholz, D. Caprioli, P. Chandra, M. R. Drout, D. Frederiks, C. Frohmaier, K. H. Hurley, C. S. Kochanek, M. Macleod, A. Meisner, P. E. Nugent, A. Ridnaia, D. J. Sand, D. Svinkin, C. Ward, S. Yang, A. Baldeschi, I. V. Chilingarian, Y. Dong, C. Esquivia, W. Fong, C. Guidorzi, P. Lundqvist, D. Milisavljevic

Physics & Astronomy Faculty Research

We present X-ray and radio observations of the Fast Blue Optical Transient CRTS-CSS161010 J045834−081803 (CSS161010 hereafter) at t = 69–531 days. CSS161010 shows luminous X-ray (L x ~ 5 × 1039 erg s−1) and radio (L ν ~ 1029 erg s−1 Hz−1) emission. The radio emission peaked at ~100 days post-transient explosion and rapidly decayed. We interpret these observations in the context of synchrotron emission from an expanding blast wave. CSS161010 launched a mildly relativistic outflow with velocity Γβc ≥ 0.55c at ~100 days. This is faster than the non-relativistic AT 2018cow (Γβc ~ 0.1c) and closer to ZTF18abvkwla (Γβc …


The Planetary Luminosity Problem: " Missing Planets" And The Observational Consequences Of Episodi Accretion, Sean D. Brittain, Joan R. Najita, Ruobing Dong, Zhaohuan Zhu May 2020

The Planetary Luminosity Problem: " Missing Planets" And The Observational Consequences Of Episodi Accretion, Sean D. Brittain, Joan R. Najita, Ruobing Dong, Zhaohuan Zhu

Physics & Astronomy Faculty Research

The high occurrence rates of spiral arms and large central clearings in protoplanetary disks, if interpreted as signposts of giant planets, indicate that gas giants commonly form as companions to young stars (Myr) at orbital separations of 10–300 au. However, attempts to directly image this giant planet population as companions to more mature stars (>10 Myr) have yielded few successes. This discrepancy could be explained if most giant planets form by "cold start," i.e., by radiating away much of their formation energy as they assemble their mass, rendering them faint enough to elude detection at later times. In that …


A Fast Radio Burst Discovered In Fast Drift Scan Survey, Weiwei Zhu, Di Li, Rui Luo, Chenchen Miao, Bing Zhang, Laura Spitler, Duncan Lorimer, Michael Kramer, David Champion, Youling Yue, Andrew Cameron, Marilyn Cruces, Ran Duan, Yi Feng, Jun Han, George Hobbs, Chenhui Niu, Jiarui Niu, Zhichen Pan, Lei Qian, Dai Shi, Ningyu Tang, Pei Wang, Hongfeng Wang, Mao Yuan, Lei Zhang, Xinxin Zhang, Shuyun Cao, Li Feng, Hengqian Gan, Long Gao May 2020

A Fast Radio Burst Discovered In Fast Drift Scan Survey, Weiwei Zhu, Di Li, Rui Luo, Chenchen Miao, Bing Zhang, Laura Spitler, Duncan Lorimer, Michael Kramer, David Champion, Youling Yue, Andrew Cameron, Marilyn Cruces, Ran Duan, Yi Feng, Jun Han, George Hobbs, Chenhui Niu, Jiarui Niu, Zhichen Pan, Lei Qian, Dai Shi, Ningyu Tang, Pei Wang, Hongfeng Wang, Mao Yuan, Lei Zhang, Xinxin Zhang, Shuyun Cao, Li Feng, Hengqian Gan, Long Gao

Physics & Astronomy Faculty Research

We report the discovery of a highly dispersed fast radio burst (FRB), FRB 181123, from an analysis of ~1500 hr of drift scan survey data taken using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The pulse has three distinct emission components, which vary with frequency across our 1.0–1.5 GHz observing band. We measure the peak flux density to be... (See full abstract in article).


Dust Condensation In Evolving Discs And The Composition Of Planetary Building Blocks, Min Li, Shichun Huang, Michail I. Petaev, Zhaohuan Zhu, Jason H. Steffen May 2020

Dust Condensation In Evolving Discs And The Composition Of Planetary Building Blocks, Min Li, Shichun Huang, Michail I. Petaev, Zhaohuan Zhu, Jason H. Steffen

Physics & Astronomy Faculty Research

Partial condensation of dust from the Solar nebula is likely responsible for the diverse chemical compositions of chondrites and rocky planets/planetesimals in the inner Solar system. We present a forward physical–chemical model of a protoplanetary disc to predict the chemical compositions of planetary building blocks that may form from such a disc. Our model includes the physical evolution of the disc and the condensation, partial advection, and decoupling of the dust within it. The chemical composition of the condensate changes with time and radius. We compare the results of two dust condensation models: one where an element condenses when the …


Swift Spectroscopy Of The Accretion Disk Wind In The Black Hole Gro J1655-40, M. Balakrishnan, J. M. Miller, N. Trueba, M. Reynolds, J. Raymond, Daniel Proga, A. C. Fabian, T. Kallman, J. Kaastra Apr 2020

Swift Spectroscopy Of The Accretion Disk Wind In The Black Hole Gro J1655-40, M. Balakrishnan, J. M. Miller, N. Trueba, M. Reynolds, J. Raymond, Daniel Proga, A. C. Fabian, T. Kallman, J. Kaastra

Physics & Astronomy Faculty Research

Chandra obtained two High Energy Transmission Grating spectra of the stellar-mass black hole GRO J1655−40 during its 2005 outburst, revealing a rich and complex disk wind. Soon after its launch, the Neil Gehrels Swift Observatory began monitoring the same outburst. Some X-ray Telescope (XRT) observations were obtained in a mode that makes it impossible to remove strong Mn calibration lines, so the Fe Kα line region in the spectra was previously neglected. However, these lines enable a precise calibration of the energy scale, facilitating studies of the absorption-dominated disk wind and its velocity shifts. Here we present fits to 15 …


Alma 0.88 Mm Survey Of Disks Around Planetary-Mass Companions, Ya-Lin Wu, Brendan P. Bowler, Patrick D. Sheehan, Sean M. Andrews, Gregory J. Herczeg, Adam L. Kraus, Luca Ricci, David J. Wilner, Zhaohuan Zhu Apr 2020

Alma 0.88 Mm Survey Of Disks Around Planetary-Mass Companions, Ya-Lin Wu, Brendan P. Bowler, Patrick D. Sheehan, Sean M. Andrews, Gregory J. Herczeg, Adam L. Kraus, Luca Ricci, David J. Wilner, Zhaohuan Zhu

Physics & Astronomy Faculty Research

Characterizing the physical properties and compositions of circumplanetary disks can provide important insights into the formation of giant planets and satellites. We report Atacama Large Millimeter/submillimeter Array 0.88 mm (Band 7) continuum observations of six planetary-mass (10–20 M Jup) companions: CT Cha b, 1RXS 1609 b, ROXs 12 b, ROXs 42B b, DH Tau b, and FU Tau b. No continuum sources are detected at the locations of the companions down to 3σ limits of 120–210 μJy. Given these nondetections, it is not clear whether disks around planetary-mass companions indeed follow the disk-flux–host-mass trend in the stellar regime. The faint …


On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young Apr 2020

On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young

Physics & Astronomy Faculty Research

The efficient modulation and control of ultrafast signals on-chip is of central importance in terahertz (THz) communications and a promis- ing route toward sub-diffraction limit THz spectroscopy. Two-dimensional (2D) materials may provide a platform for these endeavors. We explore this potential, integrating high-quality graphene p–n junctions within two types of planar transmission line circuits to modulate and emit picosecond pulses. In a coplanar strip line geometry, we demonstrate the electrical modulation of THz signal transmission by 95%. In a Goubau waveguide geometry, we achieve complete gate-tunable control over THz emission from a photoexcited graphene junction. These studies inform the development …


Vibration Overtone Hyperpolarizability Measured For H2, Rachel M. Ellis, David P. Shelton Apr 2020

Vibration Overtone Hyperpolarizability Measured For H2, Rachel M. Ellis, David P. Shelton

Physics & Astronomy Faculty Research

The second hyperpolarizability (γ) of the H2 molecule was measured by gas-phase electric field induced second harmonic generation at the frequencies of the one-photon resonance for the 3–0 Q(J) overtone transitions (v, J = 0, J → 3, J for J = 0, 1, 2, and 3). The magnitude of the resonant contribution to γ was measured with 2% accuracy using the previously determined non-resonant γ for calibration. Pressure broadening and frequency shift for the transitions were also measured. A theoretical expression for the resonant vibrational γ contribution in terms of transition polarizabilities is compared to the observations. The measured …


Structure-Strength Relations Of Distinct Mon Phases From First-Principles Calculations, Cheng Lu, Changfeng Chen Apr 2020

Structure-Strength Relations Of Distinct Mon Phases From First-Principles Calculations, Cheng Lu, Changfeng Chen

Physics & Astronomy Faculty Research

Molybdenum mononitrides (MoN) exhibit superior strength and hardness among the large class of transition-metal light-element compounds, but the underlying atomistic mechanisms for their outstanding mechanical properties and the variations of those properties among various MoN phases adopting different crystal structures remain largely unexplored and require further investigation. Here we report first-principles calculations that examine the stress-strain relations of these materials, and systematically compare results under pure and indentation shear deformations. In particular, we examine the distinct bonding structures and the associated mechanical properties in four different crystal phases of MoN that have been experimentally synthesized and stabilized under various physical …


Indentation-Strain Stiffening In Tungsten Nitrides: Mechanisms And Implications, Cheng Lu, Changfeng Chen Apr 2020

Indentation-Strain Stiffening In Tungsten Nitrides: Mechanisms And Implications, Cheng Lu, Changfeng Chen

Physics & Astronomy Faculty Research

We report on a systematic computational study of ideal strengths, i.e., the lowest stresses needed to destabilize a perfect crystal under a variety of loading conditions for six stable and metastable tungsten nitrides identified by advanced crystal structure search algorithms. We employ first-principles calculations to determine stress-strain relations and examine the corresponding atomistic bonding changes for a microscopic understanding of the structural deformation modes. The obtained results show that, in stark contrast to many previously studied transition-metal borides, carbides, and also most nitrides, the tungsten nitrides exhibit surprisingly broad and common patterns of strain-stiffening effects under indentation strains. These extraordinary …


Global 3d Radiation Magnetohydrodynamic Simulations For Fu Ori's Accretion Disc And Observational Signatures Of Magnetic Fields, Zhaohuan Zhu, Yan-Fei Jiang, James M. Stone Apr 2020

Global 3d Radiation Magnetohydrodynamic Simulations For Fu Ori's Accretion Disc And Observational Signatures Of Magnetic Fields, Zhaohuan Zhu, Yan-Fei Jiang, James M. Stone

Physics & Astronomy Faculty Research

FU Ori is the prototype of FU Orionis systems that are outbursting protoplanetary discs. Magnetic fields in FU Ori’s accretion discs have previously been detected using spectropolarimetry observations for Zeeman effects. We carry out global radiation ideal MHD simulations to study FU Ori’s inner accretion disc. We find that (1) when the disc is threaded by vertical magnetic fields, most accretion occurs in the magnetically dominated atmosphere at z ∼ R, similar to the ‘surface accretion’ mechanism in previous locally isothermal MHD simulations. (2) A moderate disc wind is launched in the vertical field simulations with a terminal speed of …


Superconductivity In Compression-Shear Deformed Diamond, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen Apr 2020

Superconductivity In Compression-Shear Deformed Diamond, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen

Physics & Astronomy Faculty Research

Diamond is a prototypical ultrawide band gap semiconductor, but turns into a superconductor with a critical temperature Tc≈4 K near 3% boron doping [E. A. Ekimov et al., Nature (London) 428, 542 (2004)]. Here we unveil a surprising new route to superconductivity in undoped diamond by compression-shear deformation that induces increasing metallization and lattice softening with rising strain, producing phonon mediated Tc up to 2.4–12.4 K for a wide range of Coulomb pseudopotential μ∗=0.15–0.05. This finding raises intriguing prospects of generating robust superconductivity in strained diamond crystal, showcasing a distinct and hitherto little explored approach to driving materials into superconducting …


The Breakup Of A Helium Cluster After Removing Attractive Interaction Among A Significant Number Of Atoms In The Cluster, Tao Pang Apr 2020

The Breakup Of A Helium Cluster After Removing Attractive Interaction Among A Significant Number Of Atoms In The Cluster, Tao Pang

Physics & Astronomy Faculty Research

The breakup of a quantum liquid droplet is examined through a 4He cluster by removing the attractive tail in the interaction between some of the atoms in the system with the diffusion quantum Monte Carlo simulation. The ground-state energy, kinetic energy, cluster size, and density profile of the cluster are evaluated against the percentage of the atoms without the attractive tail. The condition for the cluster to lose its ability to form a quantum liquid droplet at zero temperature is found and analyzed. The cluster is no longer able to form a quantum liquid droplet when about two-thirds of pairs …


Fast Radio Bursts As Strong Waves Interacting With The Ambient Medium, Yuan-Pei Yang, Bing Zhang Mar 2020

Fast Radio Bursts As Strong Waves Interacting With The Ambient Medium, Yuan-Pei Yang, Bing Zhang

Physics & Astronomy Faculty Research

Fast radio bursts (FRBs) are mysterious radio transients whose physical origin is still unknown. Within a few astronomical units near an FRB source, the electric field of the electromagnetic wave is so large that the electron oscillation velocity becomes relativistic, which makes the classical Thomson scattering theory and the linear plasma theory invalid. We discuss FRBs as strong waves interacting with the ambient medium, in terms of both electron motion properties and plasma properties. Several novel features are identified. (1) The cross section of Thomson scattering is significantly enhanced for the scattering photons. (2) On the other hand, because of …


On The Frb Luminosity Function – – Ii. Event Rate Density, Rui Luo, Yunpeng Men, Kejia Lee, Weiyang Wang, D. R. Lorimer, Bing Zhang Mar 2020

On The Frb Luminosity Function – – Ii. Event Rate Density, Rui Luo, Yunpeng Men, Kejia Lee, Weiyang Wang, D. R. Lorimer, Bing Zhang

Physics & Astronomy Faculty Research

The luminosity function of Fast Radio Bursts (FRBs), defined as the event rate per unit cosmic co-moving volume per unit luminosity, may help to reveal the possible origins of FRBs and design the optimal searching strategy. With the Bayesian modelling, we measure the FRB luminosity function using 46 known FRBs. Our Bayesian framework self-consistently models the selection effects, including the survey sensitivity, the telescope beam response, and the electron distributions from Milky Way/ the host galaxy/ local environment of FRBs. Different from the previous companion paper, we pay attention to the FRB event rate density and model the event counts …


Testing The Hypothesis Of Compact-Binary-Coalescence Origin Of Fast Radio Bursts Using A Multimessenger Approach, Min-Hao Wang, Shun-Ke Ai, Zheng-Xiang Li, Nan Xing, He Gao, Bing Zhang Mar 2020

Testing The Hypothesis Of Compact-Binary-Coalescence Origin Of Fast Radio Bursts Using A Multimessenger Approach, Min-Hao Wang, Shun-Ke Ai, Zheng-Xiang Li, Nan Xing, He Gao, Bing Zhang

Physics & Astronomy Faculty Research

In the literature, compact binary coalescences (CBCs) have been proposed as one of the main scenarios to explain the origin of some non-repeating fast radio bursts (FRBs). The large discrepancy between the FRB and CBC event rate densities suggests that their associations, if any, should only apply at most for a small fraction of FRBs. Through a Bayesian estimation method, we show how a statistical analysis of the coincident associations of FRBs with CBC gravitational wave (GW) events may test the hypothesis of these associations. We show that during the operation period of the advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO), …


High Dielectric Ternary Oxides From Crystal Structure Prediction And High-Throughput Screening, Jingyu Qu, David Zagaceta, Weiwei Zhang, Qiang Zhu Mar 2020

High Dielectric Ternary Oxides From Crystal Structure Prediction And High-Throughput Screening, Jingyu Qu, David Zagaceta, Weiwei Zhang, Qiang Zhu

Physics & Astronomy Faculty Research

The development of new high dielectric materials is essential for advancement in modern electronics. Oxides are generally regarded as the most promising class of high dielectric materials for industrial applications as they possess both high dielectric constants and large band gaps. Most previous researches on high dielectrics were limited to already known materials. In this study, we conducted an extensive search for high dielectrics over a set of ternary oxides by combining crystal structure prediction and density functional perturbation theory calculations. From this search, we adopted multiple stage screening to identify 441 new low-energy high dielectric materials. Among these materials, …


Fast Radio Bursts From Interacting Binary Neutron Star Systems, Bing Zhang Feb 2020

Fast Radio Bursts From Interacting Binary Neutron Star Systems, Bing Zhang

Physics & Astronomy Faculty Research

Recent observations of repeating fast radio bursts (FRBs) suggest that some FRBs reside in an environment consistent with that of binary neutron star (BNS) mergers. The bursting rate for repeaters could be very high and the emission site is likely from a magnetosphere. We discuss a hypothesis of producing abundant repeating FRBs in BNS systems. Decades to centuries before a BNS system coalesces, the magnetospheres of the two neutron stars start to interact relentlessly. Abrupt magnetic reconnection accelerates particles, which emit coherent radio waves in bunches via curvature radiation. FRBs are detected as these bright radiation beams point toward Earth. …


Asteroid Belt Survival Through Stellar Evolution: Dependence On The Stellar Mass, Rebecca G. Martin, Mario Livio, Jeremy L. Smallwood, Cheng Chen Feb 2020

Asteroid Belt Survival Through Stellar Evolution: Dependence On The Stellar Mass, Rebecca G. Martin, Mario Livio, Jeremy L. Smallwood, Cheng Chen

Physics & Astronomy Faculty Research

Polluted white dwarfs are generally accreting terrestrial-like material that may originate from a debris belt like the asteroid belt in the Solar system. ... See full text for complete abstract.


The Effects Of Disc Self-Gravity And Radiative Cooling On The Formation Of Gaps And Spirals By Young Planets, Shangjia Zhang, Zhaohuan Zhu Feb 2020

The Effects Of Disc Self-Gravity And Radiative Cooling On The Formation Of Gaps And Spirals By Young Planets, Shangjia Zhang, Zhaohuan Zhu

Physics & Astronomy Faculty Research

We have carried out 2D hydrodynamical simulations to study the effects of disc self-gravity and radiative cooling on the formation of gaps and spirals. (1) With disc self-gravity included, we find stronger, more tightly wound spirals and deeper gaps in more massive discs. The deeper gaps are due to the larger Angular Momentum Flux (AMF) of the waves excited in more massive discs, as expected from the linear theory. The position of the secondary gap does not change, provided that the disc is not extremely massive (Q ≳ 2). (2) With radiative cooling included, the excited spirals become monotonically more …


Effects Of Opacity Temperature Dependence On Radiatively Accelerated Clouds, Sergei Dyda, Daniel Proga, Christopher S. Reynolds Feb 2020

Effects Of Opacity Temperature Dependence On Radiatively Accelerated Clouds, Sergei Dyda, Daniel Proga, Christopher S. Reynolds

Physics & Astronomy Faculty Research

We study how different opacity–temperature scalings affect the dynamical evolution of irradiated gas clouds using time-dependent radiation-hydrodynamics simulations. When clouds are optically thick, the bright side heats up and expands, accelerating the cloud via the rocket effect. Clouds that become more optically thick as they heat accelerate ∼35 per cent faster than clouds that become optically thin. An enhancement of ∼85 per cent in the acceleration can be achieved by having a broken power-law opacity profile, which allows the evaporating gas driving the cloud to become optically thin and not attenuate the driving radiation flux. We find that up to …


Resolving The Fu Orionis System With Alma: Interacting Twin Disks?, Sebastian Perez, Antonio Hales, Hauyu Baobab Liu, Zhaohuan Zhu, Simon Casassus, Jonathan Williams, Alice Zurlo, Nicolas Cuello, Lucas Cieza, David Principe Jan 2020

Resolving The Fu Orionis System With Alma: Interacting Twin Disks?, Sebastian Perez, Antonio Hales, Hauyu Baobab Liu, Zhaohuan Zhu, Simon Casassus, Jonathan Williams, Alice Zurlo, Nicolas Cuello, Lucas Cieza, David Principe

Physics & Astronomy Faculty Research

FU Orionis objects are low-mass pre-main sequence stars characterized by dramatic outbursts several magnitudes in brightness. These outbursts are linked to episodic accretion events in which stars gain a significant portion of their mass. The physical processes behind these accretion events are not yet well understood. The archetypal FU Ori system, FU Orionis, is composed of two young stars with detected gas and dust emission. The continuum emitting regions have not been resolved until now. Here, we present 1.3 mm observations of the FU Ori binary system using the Atacama Large Millimeter/submillimeter Array. The disks are resolved at 40 mas …


Mass Determinations Of The Three Mini-Neptunes Transiting Toi-125, Louise D. Nielsen, D. Gandolfi, D. J. Armstrong, J. S. Jenkins, M. Fridlund, N. C. Santos, F. Dai, V. Adibekyan, R. Luque, Jason H. Steffen, M. Esposito, F. Meru, S. Sabotta, E. Bolmont, D. Kossakowski, J. F. Otegi, F. Murgas, M. Stalport, F. Rodler, M. R. Diaz, N. T. Kurtovic, G. Ricker, R. Vanderspek, D. W. Latham, S. Seager, J. N. Winn, J. M. Jenkins, R. Allart, J. M. Almenara, D. Barrado, S. C.C. Barros Jan 2020

Mass Determinations Of The Three Mini-Neptunes Transiting Toi-125, Louise D. Nielsen, D. Gandolfi, D. J. Armstrong, J. S. Jenkins, M. Fridlund, N. C. Santos, F. Dai, V. Adibekyan, R. Luque, Jason H. Steffen, M. Esposito, F. Meru, S. Sabotta, E. Bolmont, D. Kossakowski, J. F. Otegi, F. Murgas, M. Stalport, F. Rodler, M. R. Diaz, N. T. Kurtovic, G. Ricker, R. Vanderspek, D. W. Latham, S. Seager, J. N. Winn, J. M. Jenkins, R. Allart, J. M. Almenara, D. Barrado, S. C.C. Barros

Physics & Astronomy Faculty Research

The Transiting Exoplanet Survey Satellite, TESS, is currently carrying out an all-sky search for small planets transiting bright stars. In the first year of the TESS survey, a steady progress was made in achieving the mission’s primary science goal of establishing bulk densities for 50 planets smaller than Neptune. During that year, the TESS’s observations were focused on the southern ecliptic hemisphere, resulting in the discovery of three mini-Neptunes orbiting the star TOI-125, a V = 11.0 K0 dwarf. We present intensive HARPS radial velocity observations, yielding precise mass measurements for TOI-125b, TOI-125c, and TOI-125d. TOI-125b has an orbital period …