Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Direct Contact Pyrolysis Of Hydrocarbons: A Source Of Hydrogen And Interesting Carbon Formations, Peter G. Faught Dec 2011

Direct Contact Pyrolysis Of Hydrocarbons: A Source Of Hydrogen And Interesting Carbon Formations, Peter G. Faught

UNLV Theses, Dissertations, Professional Papers, and Capstones

The work detailed in this document looks at a novel liquid metal supported catalytic system for the generation of hydrogen by decomposition of ethanol through direct contact pyrolysis. The hydrogen is produced at relatively low temperatures (500-600°C) and has carbon and water as co-products. It should be noted that CO is not observed as a product at these low temperatures. This is to be contrasted with the hydrogen produced at higher temperature from ethanol which does contain carbon monoxide. The presence of carbon monoxide in hydrogen complicates fuel cell operation and catalytic chemical processes. Thus, the lack of CO in …


Modeling Of A Novel Solar Down Beam Test Facility Utilizing Newtonian Optics, Ryan J. Hoffmann Dec 2011

Modeling Of A Novel Solar Down Beam Test Facility Utilizing Newtonian Optics, Ryan J. Hoffmann

UNLV Theses, Dissertations, Professional Papers, and Capstones

As advances in concentrated solar energy progress there will inevitably be an increase in the demand of resources for testing new conceptions. Currently, there are limited facilities available for taking concentrated solar energy concepts from the laboratory bench scale to the engineering test scale. A proposed solution is a scientific and developmental facility that provides highly concentrated solar energy at ground level. The design presented is a solar down beam test facility utilizing a Newtonian optics approach with a flat rectangular down beam mirror to reflect and concentrate the sun's rays at ground level.

Literature review suggests a hyperbolic reflector …


High Pressure Structural Studies On Nb5si3 Up To 26.2 Gpa, Brandon Stewart, Ravhi S. Kumar Aug 2011

High Pressure Structural Studies On Nb5si3 Up To 26.2 Gpa, Brandon Stewart, Ravhi S. Kumar

Undergraduate Research Opportunities Program (UROP)

With the use of synchrotron techniques, we can better understand how crystalline structures behave under extreme conditions. This yields the opportunity to resolve complex crystal structures [1]. Here, we focus on the high pressure crystal structure of Nb5Si3. Refractory metal silicides are an important class of materials as they are used in high temperature applications such as turbines and aerospace modules. As an example, the performance of a jet engine is highly influenced by the maximum internal pressure and temperature possible. Obtaining higher levels of thrust is dependent upon the material's ability to remain structurally sound under extreme temperatures and …


Raman Spectroscopic Study Of Solid Solution Spinel Oxides, Brian D. Hosterman Aug 2011

Raman Spectroscopic Study Of Solid Solution Spinel Oxides, Brian D. Hosterman

UNLV Theses, Dissertations, Professional Papers, and Capstones

Solid solution spinel oxides of composition MgxNi1−xCr2O4, NiFexCr2−xO4, and FexCr3−xO4 were synthesized and characterized using x-ray diffraction and Raman spectroscopy. Frequencies of the Raman-active modes are tracked as the metal cations within the spinel lattice are exchanged. This gives information about the dependence of the lattice vibrations on the tetrahedral and octahedral cations. The highest-frequency Raman-active mode, A1g, is unaffected by substitution of the divalent tetrahedral cation, whereas the lower frequency vibrations are more strongly affected by substitution of the tetrahedral cation. The change in wavenumber of many phonons is nonlinear upon cation exchange. All detected modes of MgxNi1−xCr2O4 and …


Time-Dependent Crack Growth Behavior Of Alloy 617 And Alloy 230 At Elevated Temperatures, Shawoon Kumar Roy Aug 2011

Time-Dependent Crack Growth Behavior Of Alloy 617 And Alloy 230 At Elevated Temperatures, Shawoon Kumar Roy

UNLV Theses, Dissertations, Professional Papers, and Capstones

Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (K max = 27.75 MPa[checkmark]m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter - stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for …


Thin-Film Fabrication For High Pressure Thermoelectric And Electrical Resistivity Studies, Jorge L. Reynaga, Rama Venkat, Ravhi S. Kumar Apr 2011

Thin-Film Fabrication For High Pressure Thermoelectric And Electrical Resistivity Studies, Jorge L. Reynaga, Rama Venkat, Ravhi S. Kumar

Festival of Communities: UG Symposium (Posters)

Thermoelectric materials are of interest for application such as thermoelectric cooler in microprocessors and power generators in cars. High pressure plays an important role in understanding the changes in the figure of merit of thermoelectric thin films. To study the thermoelectric thin films a direct approach is to fabricate the thin film on the surface of a diamond anvil, so that the pressure dependence of structure and transport properties can be investigated easily. If we could successfully fabricate the electrical probes by depositing thin films, then it reduces the use of electrical wires as probes inside the diamond cell, as …


Graphene: Material That Will Change The Future, Jigar Desai, Darryl Reese Apr 2011

Graphene: Material That Will Change The Future, Jigar Desai, Darryl Reese

Festival of Communities: UG Symposium (Posters)

Graphene is the most recent material discovered by scientists and is a star on the horizon of materials science and condensed matter physics. The one atom thick, two dimensional materials is an amazing conductor of electricity. Although graphene was not discovered completely until 2004, it has already revealed potential applications and scientists have begun researching ways of developing graphene products for the market. Only two products have been successfully produced so far, but scientists have encountered amazing results. This material has many potential applications in the real world and is about to change the future in a positive way.


Long Term Outdoor Testing Of Low Concentration Solar Modules, Lewis Fraas, James Avery, Leonid Minkin, H. X. Huang, Tim Hebrink, Robert F. Boehm Apr 2011

Long Term Outdoor Testing Of Low Concentration Solar Modules, Lewis Fraas, James Avery, Leonid Minkin, H. X. Huang, Tim Hebrink, Robert F. Boehm

Mechanical Engineering Faculty Research

A 1‐axis carousel tracker equipped with four 3‐sun low‐concentration mirror modules has now been under test outdoors at the University of Nevada in Las Vegas (UNLV) for three years. There are three unique features associated with this unit. First, simple linear mirrors are used to reduce the amount of expensive single crystal silicon in order to potentially lower the module cost while potentially maintaining cell efficiencies over 20% and high module efficiency. Simple linear mirrors also allow the use of a single axis tracker. Second, the azimuth carousel tracker is also unique allowing trackers to be used on commercial building …


Creep In Photovoltaic Modules: Examining The Stability Of Polymeric Materials And Components, David C. Miller, Michael D. Kempe, Stephen H. Glick, Sarah R. Kurtz Feb 2011

Creep In Photovoltaic Modules: Examining The Stability Of Polymeric Materials And Components, David C. Miller, Michael D. Kempe, Stephen H. Glick, Sarah R. Kurtz

Publications (E)

Interest in renewable energy has motivated the implementation of new polymeric materials in photovoltaic modules. Some of these are non-cross-linked thermoplastics, in which there is a potential for new behaviors to occur, including phase transformation and visco-elastic flow. Differential scanning calorimetry and rheometry data were obtained and then combined with existing site-specific time-temperature information in a theoretical analysis to estimate the displacement expected to occur during module service life. The analysis identified that, depending on the installation location, module configuration and/or mounting configuration, some of the thermoplastics are expected to undergo unacceptable physical displacement. While the examples here focus on …


Measuring Degradation Rates Without Irradiance Data, Steve Pulver, Daniel Cormode, Alex Cronin, Dirk C. Jordan, Ryan Smith, Sarah R. Kurtz Feb 2011

Measuring Degradation Rates Without Irradiance Data, Steve Pulver, Daniel Cormode, Alex Cronin, Dirk C. Jordan, Ryan Smith, Sarah R. Kurtz

Publications (E)

A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that …