Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nevada, Las Vegas

Materials Science and Engineering

Chemistry and Biochemistry Faculty Research

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Modifications Of The Cztse/Mo Back-Contact Interface By Plasma Treatments, Wenjin Chen, Teoman Taskesen, David Nowak, Ulf Mikolajczak, Mohamed H. Sayed, Devendra Pareek, Jorg Ohland, Thomas Schnabel, Erik Ahlswede, Dirk Hauschild, Lothar Weinhardt, Clemens Heske, Jurgen Parisi, Levent Gutay Aug 2019

Modifications Of The Cztse/Mo Back-Contact Interface By Plasma Treatments, Wenjin Chen, Teoman Taskesen, David Nowak, Ulf Mikolajczak, Mohamed H. Sayed, Devendra Pareek, Jorg Ohland, Thomas Schnabel, Erik Ahlswede, Dirk Hauschild, Lothar Weinhardt, Clemens Heske, Jurgen Parisi, Levent Gutay

Chemistry and Biochemistry Faculty Research

Molybdenum (Mo) is the most commonly used back-contact material for copper zinc tin selenide (CZTSe)-based thin-film solar cells. For most fabrication methods, an interfacial molybdenum diselenide (MoSe2) layer with an uncontrolled thickness is formed, ranging from a few tens of nm up to ≈1 μm. In order to improve the control of the back-contact interface in CZTSe solar cells, the formation of a MoSe2 layer with a homogeneous and defined thickness is necessary. In this study, we use plasma treatments on the as-grown Mo surface prior to the CZTSe absorber formation, which consists of the deposition of stacked metallic layers …


Yttrium And Hydrogen Superstructure And Correlation Of Lattice Expansion And Proton Conductivity In The Bazr0.9y0.1o2.95 Proton Conductor, A. Braun, A. Ovalle, V. Pomjakushin, A. Cervellino, S. Erat, Wayne C. Stolte, T. Graule Jan 2009

Yttrium And Hydrogen Superstructure And Correlation Of Lattice Expansion And Proton Conductivity In The Bazr0.9y0.1o2.95 Proton Conductor, A. Braun, A. Ovalle, V. Pomjakushin, A. Cervellino, S. Erat, Wayne C. Stolte, T. Graule

Chemistry and Biochemistry Faculty Research

Bragg reflections in Y-resonant x-ray diffractograms of BaZr0.9Y0.1O2.95 (BZY10) reveal that Y is organized in a superstructure. Comparison with neutron diffraction superstructure reflections in protonated/deuterated BZY10 suggests that both superstructures are linked, and that protons move in the landscape imposed by the Y. The thermal lattice expansion decreases abruptly for protonated BZY10 at T≥648±20 K, coinciding with the onset of lateral proton diffusion and suggesting a correlation of structural changes and proton conductivity. The chemical shift in the Y L1-shell x-ray absorption spectra reveals a reduction from Y3+ toward Y2+ upon …