Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

Development Of Biomolecule Nanoparticle Conjugate For Targeted Delivery Of Therapeutics, Peidong Wu Apr 2023

Development Of Biomolecule Nanoparticle Conjugate For Targeted Delivery Of Therapeutics, Peidong Wu

Doctoral Dissertations

Delivery of therapeutics specifically to the disease site is the final goal for the field of drug discovery. Considerable efforts in understanding disease biology have contributed to identifying novel therapeutics such as small molecules, proteolysis targeting chimeras (PROTACs), peptides, proteins, and nucleic acids. However, improving their efficacy as well as minimizing their off-target toxicity remains challenging. Developing vectors that could not only efficiently encapsulate these therapeutics but also direct these therapeutics to the target site is a potential solution to address these challenges. In this dissertation, a block-copolymer-based nanoparticle platform has been developed optimized, and decorated with various kinds of …


Expanding The Polymer Zwitterion Library – Novel Phosphonium-Based Polymer Zwitterions And Analogous Structures, Marcel U. Brown Oct 2022

Expanding The Polymer Zwitterion Library – Novel Phosphonium-Based Polymer Zwitterions And Analogous Structures, Marcel U. Brown

Doctoral Dissertations

This dissertation encompasses the synthesis, characterization and application of novel polymer zwitterions that significantly expand the library of available zwitterionic polymers. Their facile synthesis is facilitated by the preparation of a novel functional sultone precursor molecule, which can be ring-opened by commercially available phosphine, amine and sulfide nucleophiles, affording phosphonium, ammonium or sulfonium sulfonate monomers, respectively. Most notably, this work describes the invention of phosphonium-based polymer zwitterions, establishing a new class of zwitterionic polymer structures with unique solution and interfacial properties. Furthermore, the incorporation of these phosphonium sulfonates into block copolymer architectures with conventional polymer zwitterions, and the resulting switchable …


Developing Injectable And Implantable Polymer Zwitterion Platforms For Glioblastoma Treatment, Sarah Ward Mar 2022

Developing Injectable And Implantable Polymer Zwitterion Platforms For Glioblastoma Treatment, Sarah Ward

Doctoral Dissertations

This dissertation describes the synthesis, characterization, and application of novel polymer zwitterion-drug conjugates intended for treating glioblastoma, with a particular focus on phosphorylcholine (PC) and temozolomide (TMZ). Using versatile TMZ-containing monomers, injectable polymer prodrugs and implantable polymeric hydrogels were prepared over a broad range of drug incorporations with tunable properties, making them ideally suited for further in vivo and clinical evaluations. The work presented here greatly expands the knowledge base of TMZ formulations and gives rise to several routes which circumvent the challenges associated with its use. Chapter 2 describes the incorporation of a novel TMZ-methacrylate monomer into random and …


Behavioral Modulation Of Supramolecular Assemblies Via Covalent And Non-Covalent Interfacial Transformations, Ann Fernandez Sep 2021

Behavioral Modulation Of Supramolecular Assemblies Via Covalent And Non-Covalent Interfacial Transformations, Ann Fernandez

Doctoral Dissertations

There are several molecular level mechanisms at the origin of biological functions that serve as inspiration for the development of the “next generation” of materials that display adaptive and interactive properties. However, it will take time for synthetic materials to approach the level of complexity, robustness, and adaptability of biological systems. Although there are switchable platforms that respond via sensitized molecular components, there are currently no examples of materials that truly possess the type of autonomous behavior seen in biological systems. Even though these concepts are common in living organisms, their translation into a synthetic platform remains challenging to this …


Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim Oct 2019

Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim

Doctoral Dissertations

Recent advances in the field of biomedical and life-sciences are increasingly demanding more life-like actuation with higher degrees of freedom in motion at small scales. Many researchers have developed various solutions to satisfy these emerging requirements. In many cases, new solutions are made possible with the development of novel polymeric actuators. Advances in polymeric actuation not only addressed problems concerning low degree of freedom in motion, large system size, and bio-incompatibility associated with conventional actuators, but also led to the discovery of novel applications, which were previously unattainable with conventional engineered systems. This dissertation focuses on developing novel actuation mechanisms …


Synthesis Of Novel Zwitterionic Polymers: From Functional Surfactants To Therapeutics, Matthew Skinner Mar 2018

Synthesis Of Novel Zwitterionic Polymers: From Functional Surfactants To Therapeutics, Matthew Skinner

Doctoral Dissertations

This dissertation describes the synthesis, characterization, and investigation of novel zwitterionic polymers containing phosphorylcholine (PC), sulfobetaine (SB), and functional choline phosphate (CP) zwitterions for use as surfactants, self-assembled nanomaterials, and therapeutics. Facile, reproducible, and modular chemistries were utilized for incorporating zwitterions into a range of polymer backbones, and strategies were developed for overcoming difficult challenges encountered in zwitterionic polymer synthesis, especially related to the varying solubility of zwitterions, hydrophobic polymers, and functional comonomers. Synthetic strategies utilized in this work give access to well-defined materials with narrow molecular weight distributions, tunable compositions and architectures, and versatile chemical functionality. Chapter 2 describes …


Formulation And Characterization Of Lipogels As A Tunable Delivery Scaffold, Celia Homyak Mar 2018

Formulation And Characterization Of Lipogels As A Tunable Delivery Scaffold, Celia Homyak

Doctoral Dissertations

Nanomedicines within the clinic commonly utilize lipid-based scaffolds due to their aqueous assembly and non-covalent dual-guest loading capabilities. Nevertheless, poor stability in vivo and premature guest release remains a challenge with these systems. Polymeric nanomaterials are a popular alternative due to their good stability in vivo with controllable guest release. A caveat to polymeric scaffolds though, is the excess synthetic effort involved for non-covalent dual-drug encapsulation. Benefit lies in harnessing advantages of lipid and polymeric materials via lipid-polymer hybrid scaffold. Such materials have promise due to their dual-encapsulation and dual-stimuli-sensitive characteristics. The need to better understand these materials led us …


Functional Hydrophilic Polymers For Solution Assembly And Non-Viral Gene Therapy, Rachel A. Letteri Nov 2016

Functional Hydrophilic Polymers For Solution Assembly And Non-Viral Gene Therapy, Rachel A. Letteri

Doctoral Dissertations

This thesis examines functional hydrophilic polymers designed in linear and comb architectures and that carry functional moieties in the context of solution assembly and non-viral gene therapy. Specifically, polymers containing cations, zwitterions, and reactive groups are investigated as non-viral gene therapy reagents and at oil-water interfaces on droplets. Cations facilitate complexation of nucleic acids and interaction with cellular and nuclear membranes, while zwitterions impart stimuli-responsive solution properties and biocompatibility. Reactive groups, including alkenes, alkynes, and benzylic methylenes, permit post-polymerization modification leading to tunable polymer properties in solution and at interfaces. This work expands the knowledge base related to solution, interfacial, …


Tunable Photonic Multilayers From Stimulus-Responsive, Photo-Crosslinkable Polymers, Maria C. Chiappelli Aug 2015

Tunable Photonic Multilayers From Stimulus-Responsive, Photo-Crosslinkable Polymers, Maria C. Chiappelli

Doctoral Dissertations

This dissertation describes the synthesis of photo-crosslinkable copolymers and their utilization for the fabrication and testing of tunable and responsive one-dimensional (1D) photonic multilayers. Photonic multilayers exhibit structural color due to the interference of incident light at layer interfaces, providing a convenient route towards optically responsive materials that do not rely on potentially light- or oxygen-sensitive chromophore-containing pigments and dyes. A fabrication technique based on sequential spin-coating and crosslinking of photo-crosslinkable polymers is used to assemble tunable and responsive photonic multilayers. Chapter One introduces the fundamental underlying principles of 1D photonic structures and explores their importance in a variety of …


Functional Nanoparticles At Interfaces: Emulsion Stabilization And Triggered Inversion, Caroline Laure Marie Miesch Nov 2014

Functional Nanoparticles At Interfaces: Emulsion Stabilization And Triggered Inversion, Caroline Laure Marie Miesch

Doctoral Dissertations

Encapsulation of materials can be performed through the stabilization of fluid-fluid interfaces and the formation of emulsion droplets, which is commonly achieved with surfactants, including small molecules and polymers, as well as particles that are, typically, micron-scale in diameter. The worked contained in this dissertation centered on droplets that are stabilized by nanoparticles, including metallic nanoparticles and semiconductor quantum dots, which bring the conductive and fluorescent properties inherent to such nanoparticles into the droplet construction. Double emulsion droplets, both oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) were formed using nanoparticles as the only surfactant in solution. Different types of nanoparticles were found …


Molecular Designs For Organic Semiconductors: Design, Synthesis And Charge Transport Properties, Tejaswini Sharad Kale May 2011

Molecular Designs For Organic Semiconductors: Design, Synthesis And Charge Transport Properties, Tejaswini Sharad Kale

Open Access Dissertations

Understanding structure-property relationship of molecules is imperative for designing efficient materials for organic semiconductors. Organic semiconductors are based on π-conjugated molecules, either small molecules or macromolecules such as dendrimers or polymers. Charge transport through organic materials is one of the most important processes that drive organic electronic devices. We have investigated the charge transport properties in various molecular designs based on dendrons, dendron-rod-coil molecular triads, and conjugated oligomers. The charge transport properties were studied using bottom contact field effect transistors, in which the material was deposited by spin coating.

In case of dendrons, their generation and density of charge transporting …