Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Focus On Rna Isolation: Obtaining Rna For Microrna (Mirna) Expression Profiling Analyses Of Neural Tissue, Wang-Xia Wang, Bernard R. Wilfred, Donald A. Baldwin, R. Benjamin Isett, Na Ren, Arnold J. Stromberg, Peter T. Nelson Nov 2008

Focus On Rna Isolation: Obtaining Rna For Microrna (Mirna) Expression Profiling Analyses Of Neural Tissue, Wang-Xia Wang, Bernard R. Wilfred, Donald A. Baldwin, R. Benjamin Isett, Na Ren, Arnold J. Stromberg, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are present in all known plant and animal tissues and appear to be somewhat concentrated in the mammalian nervous system. Many different miRNA expression profiling platforms have been described. However, relatively little research has been published to establish the importance of 'upstream' variables in RNA isolation for neural miRNA expression profiling. We tested whether apparent changes in miRNA expression profiles may be associated with tissue processing, RNA isolation techniques, or different cell types in the sample. RNA isolation was performed on a single brain sample using eight different RNA isolation methods, and results were correlated using a conventional …


Tetrahymena Thermophila And Candida Albicans Group I Intron-Derived Ribozymes Can Catalyze The Trans-Excision-Splicing Reaction, P. Patrick Dotson Ii, Ashley K. Johnson, Stephen M. Testa Sep 2008

Tetrahymena Thermophila And Candida Albicans Group I Intron-Derived Ribozymes Can Catalyze The Trans-Excision-Splicing Reaction, P. Patrick Dotson Ii, Ashley K. Johnson, Stephen M. Testa

Chemistry Faculty Publications

Group I intron-derived ribozymes can catalyze a variety of non-native reactions. For the trans-excision-splicing (TES) reaction, an intron-derived ribozyme from the opportunistic pathogen Pneumocystis carinii catalyzes the excision of a predefined region from within an RNA substrate with subsequent ligation of the flanking regions. To establish TES as a general ribozyme-mediated reaction, intron-derived ribozymes from Tetrahymena thermophila and Candida albicans, which are similar to but not the same as that from Pneumocystis, were investigated for their propensity to catalyze the TES reaction. We now report that the Tetrahymena and Candida ribozymes can catalyze the excision of a …