Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Predicting Habitat Choice After Rapid Environmental Change, Philip H. Crowley, Pete C. Trimmer, Orr Spiegel, Sean M. Ehlman, William S. Cuello, Andrew Sih May 2019

Predicting Habitat Choice After Rapid Environmental Change, Philip H. Crowley, Pete C. Trimmer, Orr Spiegel, Sean M. Ehlman, William S. Cuello, Andrew Sih

Biology Faculty Publications

Decisions made while searching for settlement sites (e.g., nesting, oviposition) often have major fitness implications. Despite numerous case studies, we lack theory to explain why some species are thriving while others are making poor habitat choices after environmental change. We develop a model to predict (1) which kinds of environmental change have larger, negative effects on fitness, (2) how evolutionary history affects susceptibility to environmental change, and (3) how much lost fitness can be recovered via readjustment after environmental change. We model the common scenario where animals search an otherwise inhospitable matrix, encountering habitats of varying quality and settling when …


Trans-Cinnamic Acid-Induced Leaf Expansion Involves An Auxin-Independent Component, Jasmina Kurepa, Jan A. Smalle Apr 2019

Trans-Cinnamic Acid-Induced Leaf Expansion Involves An Auxin-Independent Component, Jasmina Kurepa, Jan A. Smalle

Plant and Soil Sciences Faculty Publications

The phenylpropanoid pathway, the source of a large array of compounds with diverse functions, starts with the synthesis of trans-cinnamic acid (t-CA) that is converted by cinnamate-4-hydroxylase (C4H) into p-coumaric acid. We have recently shown that in Arabidopsis, exogenous t-CA promotes leaf growth by increasing cell expansion and that this response requires auxin signaling. We have also shown that cell expansion is increased in C4H loss-of-function mutants. Here we provide further evidence that leaf growth is enhanced by either t-CA or a t-CA derivative that accumulates upstream of C4H. We also show that …


Effects Of Increased Precipitation On The Life History Of Spring- And Autumn-Germinated Plants Of The Cold Desert Annual Erodium Oxyrhynchum (Geraniaceae), Yanfeng Chen, Xiang Shi, Lingwei Zhang, Jerry M. Baskin, Carol C. Baskin, Huiliang Liu, Daoyuan Zhang Apr 2019

Effects Of Increased Precipitation On The Life History Of Spring- And Autumn-Germinated Plants Of The Cold Desert Annual Erodium Oxyrhynchum (Geraniaceae), Yanfeng Chen, Xiang Shi, Lingwei Zhang, Jerry M. Baskin, Carol C. Baskin, Huiliang Liu, Daoyuan Zhang

Biology Faculty Publications

Future increased precipitation in cold desert ecosystems may impact annual/ephemeral plant species that germinate in both spring and autumn. Our primary aim was to compare the life history characteristics of plants from spring-germinating (SG) and autumn-germinating (AG) seeds of Erodium oxyrhynchum. Plants in field plots with simulated increases in precipitation of 0, 30 and 50 % in spring and summer were monitored to determine seedling survival, phenology, plant size, seed production and biomass accumulation and allocation. Germination characteristics were determined in the laboratory for seeds produced by plants in all increased precipitation treatments. Increased precipitation in spring significantly improved survival …


Restoration Of Aberrant Mtor Signaling By Intranasal Rapamycin Reduces Oxidative Damage: Focus On Hne-Modified Proteins In A Mouse Model Of Down Syndrome, Fabio Di Domenico, Antonella Tramutola, Eugenio Barone, Chiara Lanzillotta, Olivia Defever, Andrea Arena, Ilaria Zuliani, Cesira Foppoli, Federica Iavarone, Federica Vincenzoni, Massimo Castagnola, D. Allan Butterfield, Marzia Perluigi Mar 2019

Restoration Of Aberrant Mtor Signaling By Intranasal Rapamycin Reduces Oxidative Damage: Focus On Hne-Modified Proteins In A Mouse Model Of Down Syndrome, Fabio Di Domenico, Antonella Tramutola, Eugenio Barone, Chiara Lanzillotta, Olivia Defever, Andrea Arena, Ilaria Zuliani, Cesira Foppoli, Federica Iavarone, Federica Vincenzoni, Massimo Castagnola, D. Allan Butterfield, Marzia Perluigi

Chemistry Faculty Publications

Increasing evidences support the notion that the impairment of intracellular degradative machinery is responsible for the accumulation of oxidized/misfolded proteins that ultimately results in the deposition of protein aggregates. These events are key pathological aspects of “protein misfolding diseases”, including Alzheimer disease (AD). Interestingly, Down syndrome (DS) neuropathology shares many features with AD, such as the deposition of both amyloid plaques and neurofibrillary tangles. Studies from our group and others demonstrated, in DS brain, the dysfunction of both proteasome and autophagy degradative systems, coupled with increased oxidative damage. Further, we observed the aberrant increase of mTOR signaling and of its …


Seed Germination Responses To Seasonal Temperature And Drought Stress Are Species‐Specific But Not Related To Seed Size In A Desert Steppe: Implications For Effect Of Climate Change On Community Structure, Fengyan Yi, Zhaoren Wang, Carol C. Baskin, Jerry M. Baskin, Ruhan Ye, Hailian Sun, Yuanyuan Zhang, Xuehua Ye, Guofang Liu, Xuejun Yang, Zhenying Huang Feb 2019

Seed Germination Responses To Seasonal Temperature And Drought Stress Are Species‐Specific But Not Related To Seed Size In A Desert Steppe: Implications For Effect Of Climate Change On Community Structure, Fengyan Yi, Zhaoren Wang, Carol C. Baskin, Jerry M. Baskin, Ruhan Ye, Hailian Sun, Yuanyuan Zhang, Xuehua Ye, Guofang Liu, Xuejun Yang, Zhenying Huang

Biology Faculty Publications

Investigating how seed germination of multiple species in an ecosystem responds to environmental conditions is crucial for understanding the mechanisms for community structure and biodiversity maintenance. However, knowledge of seed germination response of species to environmental conditions is still scarce at the community level. We hypothesized that responses of seed germination to environmental conditions differ among species at the community level, and that germination response is not correlated with seed size. To test this hypothesis, we determined the response of seed germination of 20 common species in the Siziwang Desert Steppe, China, to seasonal temperature regimes (representing April, May, June, …