Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji Dec 2012

Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji

Graduate Theses and Dissertations

Thin film solar cells are promising to realize cheap solar energy. Compared to conventional wafer cells, they can reduce the use of semiconductor material by 90%. The efficiency of thin film solar cells, however, is limited due to insufficient light absorption. Sufficient light absorption at the bandgap of semiconductor requires a light path more than 10x the thickness of the semiconductor. Advanced designs for light trapping are necessary for solar cells to absorb sufficient light within a limited volume of semiconductor. The goal is to convert the incident light into a trapped mode in the semiconductor layer.

In this dissertation, …


Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer Dec 2012

Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer

Graduate Theses and Dissertations

Advances in material science have resulted in the development of electrically nonlinear high dielectric thin film ferroelectrics, which have led to new opportunities for the creation of novel devices. This dissertation investigated one such device: a low voltage nonlinear transmission line (NLTL). A finite element simulation of ferroelectric transmission lines showed that NLTLs are capable of creating shockwaves. Additionally, if the losses are kept sufficiently low, it was shown that voltage gain should be possible. Furthermore, a method of accounting for material dispersion was developed. Results from simulations including material dispersion showed that temporal solitons might be possible from a …


An Extension To Particle Polarizability To Predict Coupling Behavior In Periodic Nanoplasmonic Arrays, Drew Dejarnette Aug 2012

An Extension To Particle Polarizability To Predict Coupling Behavior In Periodic Nanoplasmonic Arrays, Drew Dejarnette

Graduate Theses and Dissertations

Plasmonic nanoparticles organized in arrays interact to create spectral patterns which are amplified by individual particle polarizability. It was hypothesized that particle polarizability could be used as a predictor of spectral behavior from far-field interactions within the array. Inter-particle coupling produced an extraordinary peak in extinction efficiency at wavelengths equal to or larger than the single particle plasmon resonance peak. Interactions that produced constructive coupling were found to mimic changes in the particle polarizability model. Testing of the hypothesis was performed using the coupled dipole approximation with parametric characterization of array geometries, giving specific particle size and lattice constant combinations …


Phase Control In Atomic Coherence, Utsab Khadka Aug 2012

Phase Control In Atomic Coherence, Utsab Khadka

Graduate Theses and Dissertations

In this thesis, atomic coherence is used to enhance nonlinear optical processes in multi-level atoms. The multi-photon transitions are driven resonantly, and at the same time without absorptive losses, by using electromagnetically induced transparency (EIT), thereby allowing the study of χ(3) and χ(5) nonlinearities using weak driving fields. The coherently modified probe beam(s) and the atom-radiated signal fields arising from four- and six- wave- mixing (FWM and SWM) processes are measured in the spectral, temporal and spatial domains.

In a three-level ladder-type atomic system, multiple peaks having spectral asymmetries are observed in the EIT window as well as …


Polarization Properties Of Maxwell-Gauss Laser Beams, Jessica Patricia Conry Aug 2012

Polarization Properties Of Maxwell-Gauss Laser Beams, Jessica Patricia Conry

Graduate Theses and Dissertations

Laser beams are wave-like optical disturbances. They are characterized by a dominant direction of propagation and a finite extent transverse to the direction of propagation. Many characteristics of laser beams can be described in terms of a scalar function multiplied by a constant vector, which can be real (for linear polarization) or complex (for elliptical polarization). The scalar function is a solution to the paraxial scalar wave equation. This scalar description, however, fails to describe the polarization and focusing characteristics of laser beams correctly. For a correct accounting of these characteristics, the electric and magnetic fields associated with laser beams …


Gain Of A Single Gas Electron Multiplier, Mythra Varun Nemallapudi Aug 2012

Gain Of A Single Gas Electron Multiplier, Mythra Varun Nemallapudi

Graduate Theses and Dissertations

Gas Electron Multiplier (GEM) is a gaseous detector used in particle detection and is

known for its high rate capability. Ever since its invention in 1997, GEM was applied in

many areas and recently has been proposed to be installed in the CMS high η regions for

upgrade at LHC, CERN. A complete understanding of the working and gain behaviour does

not exist. GEM gain is influenced by charging up and this has been variedly interpreted

in literature lacking consensus. I have attempted in this work through simulations and

measurements to achieve a better understanding of single GEM gain and …


Dynamical Properties Of Ferroelectric Perovskites (Ba,Sr)Tio3 And Pb(Zr,Ti)O3 Systems From First Principles, Jeevaka Weerasinghe Aug 2012

Dynamical Properties Of Ferroelectric Perovskites (Ba,Sr)Tio3 And Pb(Zr,Ti)O3 Systems From First Principles, Jeevaka Weerasinghe

Graduate Theses and Dissertations

A first-principles-based effective Hamiltonian scheme which incorporates coupling between ferroelectric (FE) and antiferrodistortive (AFD) motions is applied to Pb(Zr,Ti)O3 alloys. It validates the existence of two modes of E symmetry (rather than the single E(1TO) soft mode) in the 50-75 cm-1 range for temperatures smaller than 200 K and for compositions falling within the Rhombohedral R3c phase. Coupling between long-range-ordered FE and AFD motions is shown to be the cause of the additional mode and more insight into its nature is provided. This scheme is further used to reveal a field-induced anticrossing involving FE and AFD degrees of …


Mott Transition And Electronic Structure In Complex Oxide Heterostructures, Jian Liu May 2012

Mott Transition And Electronic Structure In Complex Oxide Heterostructures, Jian Liu

Graduate Theses and Dissertations

Strongly correlated electron systems, particularly transition metal oxides, have been a focus of condensed matter physics for more than two decades since the discovery of high-temperature superconducting cuprates. Diverse competing phases emerge, spanning from exotic magnetism to unconventional superconductivity, in proximity to the localized-itinerant transition of Mott insulators. While studies were concentrated on bulk crystals, the recent rapid advance in synthesis has enabled fabrication of high-quality oxide heterostructures, offering a new route to create novel artificial quantum materials.

This dissertation details the investigation on ultrathin films and heterostructures of 3d7(t2g6eg1) systems with …


Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock May 2012

Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock

Graduate Theses and Dissertations

Graphene, what some are terming the "new silicon", has the possibility of revolutionizing technology through nanoscale design processes. Fabrication of graphene for device processing is limited largely by the temperatures used in conventional deposition. High temperatures are detrimental to device design where many different materials may be present. For this reason, graphene synthesis at low temperatures using plasma-enhanced chemical vapor deposition is the subject of much research. In this thesis, a tool for ultra-high vacuum plasma-enhanced chemical vapor deposition (UHV-PECVD) and accompanying subsystems, such as control systems and alarms, are designed and implemented to be used in future graphene growths. …


Investigation Of Negative Differential Resistance Phenomena In Quantum Well Heterostructures, Nazariy Andrushchak May 2012

Investigation Of Negative Differential Resistance Phenomena In Quantum Well Heterostructures, Nazariy Andrushchak

Graduate Theses and Dissertations

Increasing interest in entirely new possibilities for quantum mechanical description of carriers transport is becoming more evident with the developing advancements in epitaxial growth technique. Consequently, molecular beam epitaxy (MBE) technique is considered to be the most precise technique that allows the growth of ultra-thin layers of different compositions.

Those structures can be designed to investigate the wave-nature of carriers, which broadens the possibilities in device design and fabrication for a specific area. In this thesis the fundamental study of the real space charge transfer (RST) mechanism that took place in quantum well heterostructures and led to the negative differential …


Synthesis And Optical Properties Of Sprayed Zno And Zno:Ga Thin Films, N. F. Habubi, S. S. Chiad, S. Jabbar, W. Jabbar Jan 2012

Synthesis And Optical Properties Of Sprayed Zno And Zno:Ga Thin Films, N. F. Habubi, S. S. Chiad, S. Jabbar, W. Jabbar

Journal of the Arkansas Academy of Science

Characteristics and optical constants of pure and Ga-doped ZnO thin films have been studied. Pure and Ga-doped zinc oxide thin films were deposited onto glass substrates using the spray pyrolysis technique. Optical absorption studies in the wavelength range of 300–900 nm showed a peak near 450 nm for different doped films (in addition to the peak for un-doped ZnO). Increasing the doping concentration of Ga to 7% induced an increase in the optical constants of films. This increase is attributed to the formation of chargetransfer complexes. ZnO thin films doped with Ga have improved the optical transmittance in the visible …


Fabrication And Characterization Of Aluminum-Doped Zno/Pani Hybrid Solar Cells, S. Abdulalmohsin, S. M. Al-Mutoki, Z. Li Jan 2012

Fabrication And Characterization Of Aluminum-Doped Zno/Pani Hybrid Solar Cells, S. Abdulalmohsin, S. M. Al-Mutoki, Z. Li

Journal of the Arkansas Academy of Science

We report a facile method to fabricate an AZO/PANI heterostructure by a sandwiching technique. Aluminum-doped ZnO (AZO) films were deposited onto indium tin oxide (ITO) glass using the sputtering technique while PANI films were deposited onto ITO glass using electropolymerization. The optoelectric properties of the inorganic/organic device were characterized


Current Range In Lightning Return Strokes, M. Hemmati, W. P. Childs, D. C. Waters, J. R. Christensen, B. C. Richard Jan 2012

Current Range In Lightning Return Strokes, M. Hemmati, W. P. Childs, D. C. Waters, J. R. Christensen, B. C. Richard

Journal of the Arkansas Academy of Science

In our investigation of breakdown waves, we use a one-dimensional, steady-state, constant velocity fluid model. This investigation involves breakdown waves for which the electric field force on electrons is in the opposite direction of wave propagation. The waves are considered to be shock fronted and the electron gas partial pressure is large enough to sustain the wave propagation. Our basic set of electron fluid-dynamical equations is composed of the equations for conservation of mass, momentum and energy, coupled with Poisson’s equation. This investigation involves breakdown waves for which a large current exists behind the shock front. The current behind the …


Electrochemical Polymerization Of Ppy-Mwcnt Composite As A Counter Electrode For Dye-Sensitized Solar Cells, S. Abdulalmohsin, S. M. Al-Mutoki, Z. Li Jan 2012

Electrochemical Polymerization Of Ppy-Mwcnt Composite As A Counter Electrode For Dye-Sensitized Solar Cells, S. Abdulalmohsin, S. M. Al-Mutoki, Z. Li

Journal of the Arkansas Academy of Science

Polypyrrole (PPy) - multi wall carbon nanotube (MWCNT) nanocomposites were synthesized by using in situ electrochemical polymerization with different COOH-functionalized MWCNTs. The PPY-MWCNT composites were used as counter electrode in the fabrication of dye sensitized solar cells (DSCs). Compared to the DSC device with PPy counter electrode, the devices with PPY/MWCNT composite electrode offer much higher total photovoltaic conversion efficiency due to the reduced series resistance. These PPY/MWCNT nanocomposite materials proved to be a good alternate to the expensive Pt as counter electrode in DSC.


Al/Pani-Mwnt/Au-Plastic Schottky Diode Solar Cells, S. Abdulalmohsin, S. M. Al-Mutoki, Z. Li Jan 2012

Al/Pani-Mwnt/Au-Plastic Schottky Diode Solar Cells, S. Abdulalmohsin, S. M. Al-Mutoki, Z. Li

Journal of the Arkansas Academy of Science

Al/PANI-MWNT/Au-Plastic Schottky diode solar cells were fabricated by the electrochemical polymerization technique to make polyaniline films on the top of gold nanoparticles film. The aluminum contact was deposited by thermal evaporation. The electro-optical characteristics of these devices produced at the different polymerization time were compared. Here, we achieved the highest ever reported open-circuit voltage of 0.8 V with the electrochemical polymerization technique. The polymerization of polyaniline films was thought to be a major factor in the enhanced performance. The effects of varying the polyaniline thickness on the device performance were investigated