Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

San Jose State University

Hamiltonians

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

A Short Introduction To Numerical Linked-Cluster Expansions, Baoming Tang, Ehsan Khatami, Marcos Rigol Mar 2013

A Short Introduction To Numerical Linked-Cluster Expansions, Baoming Tang, Ehsan Khatami, Marcos Rigol

Faculty Publications

We provide a pedagogical introduction to numerical linked-cluster expansions (NLCEs). We sketch the algorithm for generic Hamiltonians that only connect nearest-neighbor sites in a finite cluster with open boundary conditions. We then compare results for a specific model, the Heisenberg model, in each order of the NLCE with the ones for the finite cluster calculated directly by means of full exact diagonalization. We discuss how to reduce the computational cost of the NLCE calculations by taking into account symmetries and topologies of the linked clusters. Finally, we generalize the algorithm to the thermodynamic limit, and discuss several numerical resummation techniques …


Cluster Solver For Dynamical Mean-Field Theory With Linear Scaling In Inverse Temperature, Ehsan Khatami, C. Lee, Z. Bai, R. Scalettar, M. Jarrell May 2010

Cluster Solver For Dynamical Mean-Field Theory With Linear Scaling In Inverse Temperature, Ehsan Khatami, C. Lee, Z. Bai, R. Scalettar, M. Jarrell

Faculty Publications

Dynamical mean-field theory and its cluster extensions provide a very useful approach for examining phase transitions in model Hamiltonians and, in combination with electronic structure theory, constitute powerful methods to treat strongly correlated materials. The key advantage to the technique is that, unlike competing real-space methods, the sign problem is well controlled in the Hirsch-Fye (HF) quantum Monte Carlo used as an exact cluster solver. However, an important computational bottleneck remains; the HF method scales as the cube of the inverse temperature, β. This often makes simulations at low temperatures extremely challenging. We present here a method based on determinant …