Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Viscosities, Diffusion Coefficients, And Mixing Times Of Intrinsic Fluorescent Organic Molecules In Brown Limonene Secondary Organic Aerosol And Tests Of The Stokes–Einstein Equation, Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, Allan K. Bertram Feb 2019

Viscosities, Diffusion Coefficients, And Mixing Times Of Intrinsic Fluorescent Organic Molecules In Brown Limonene Secondary Organic Aerosol And Tests Of The Stokes–Einstein Equation, Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, Allan K. Bertram

Physics Faculty Publications and Presentations

Viscosities and diffusion rates of organics within secondary organic aerosol (SOA) remain uncertain. Using the bead-mobility technique, we measured viscosities as a function of water activity (aw) of SOA generated by the ozonolysis of limonene followed by browning by exposure to NH3 (referred to as brown limonene SOA or brown LSOA). These measurements together with viscosity measurements reported in the literature show that the viscosity of brown LSOA increases by 3–5 orders of magnitude as the aw decreases from 0.9 to approximately 0.05. In addition, we measured diffusion coefficients of intrinsic fluorescent organic molecules within brown …


Interlaboratory Comparison Of Δ13c And Δd Measurements Of Atmospheric Ch4 For Combined Use Of Data Sets From Different Laboratories, Taku Umezawa, Carl Brenninkmeijer, Thomas Röckmann, Carina Van Der Veen, Stanley C. Tyler, Ryo Fujita, Shinji Morimoto, Shuji Aoki, Todd Sowers, Jochen Schmitt, Michael Bock, Jonas Beck, Hubertus Fischer, Sylvia E. Michel, Bruce H. Vaughn, John B. Miller, James W.C. White, Gordon Brailsford, Hinrich Schaefer, Peter Sperlich, Willi A. Brand, Michael Rothe, Thomas Blunier, David Lowry, Rebecca E. Fisher, Euan G. Nisbet, Andrew L. Rice, Peter Bergamaschi, Cordelia Veidt, Ingeborg Levin Mar 2018

Interlaboratory Comparison Of Δ13c And Δd Measurements Of Atmospheric Ch4 For Combined Use Of Data Sets From Different Laboratories, Taku Umezawa, Carl Brenninkmeijer, Thomas Röckmann, Carina Van Der Veen, Stanley C. Tyler, Ryo Fujita, Shinji Morimoto, Shuji Aoki, Todd Sowers, Jochen Schmitt, Michael Bock, Jonas Beck, Hubertus Fischer, Sylvia E. Michel, Bruce H. Vaughn, John B. Miller, James W.C. White, Gordon Brailsford, Hinrich Schaefer, Peter Sperlich, Willi A. Brand, Michael Rothe, Thomas Blunier, David Lowry, Rebecca E. Fisher, Euan G. Nisbet, Andrew L. Rice, Peter Bergamaschi, Cordelia Veidt, Ingeborg Levin

Physics Faculty Publications and Presentations

We report results from a worldwide interlaboratory comparison of samples among laboratories that measure (or measured) stable carbon and hydrogen isotope ratios of atmospheric CH413C-CH4 and δD-CH4). The offsets among the laboratories are larger than the measurement reproducibility of individual laboratories. To disentangle plausible measurement offsets, we evaluated and critically assessed a large number of intercomparison results, some of which have been documented previously in the literature. The results indicate significant offsets of δ13C-CH4 and δD- CH4 measurements among data sets reported from different laboratories; the differences among laboratories …


Mechanisms Of Methane Transport Through Populus Trichocarpa, Ellynne Marie Kutschera, M. A. K. Khalil, Andrew Rice, Todd Rosenstiel Mar 2016

Mechanisms Of Methane Transport Through Populus Trichocarpa, Ellynne Marie Kutschera, M. A. K. Khalil, Andrew Rice, Todd Rosenstiel

Physics Faculty Publications and Presentations

Although the dynamics of methane (CH4) emission from croplands and wetlands have been fairly well investigated, the contribution of trees to global CH4 emission and the mechanisms of tree transport are relatively unknown. CH4 emissions from the common wetland tree species Populus trichocarpa (black cottonwood) native to the Pacific Northwest were measured under hydroponic conditions in order to separate plant transport mechanisms from the influence of soil processes. Roots were exposed to CH4 enriched water and canopy emissions of CH4 were measured. The average flux for 34 trials (at temperatures ranging from 17 to 25 °C) was 2.8 ± 2.2 …


Natural Emissions Of Chlorine-Containing Gases: Reactive Chlorine Emissions Inventory, M. A. K. Khalil, R. M. Moore, D. B. Harper, J. M. Lobert, D. J. Erickson, V. Koropalov, W. T. Sturges, W. C. Keene Apr 1999

Natural Emissions Of Chlorine-Containing Gases: Reactive Chlorine Emissions Inventory, M. A. K. Khalil, R. M. Moore, D. B. Harper, J. M. Lobert, D. J. Erickson, V. Koropalov, W. T. Sturges, W. C. Keene

Physics Faculty Publications and Presentations

Although there are many chlorine-containing trace gases in the atmosphere, only those with atmospheric lifetimes of 2 years or fewer appear to have significant natural sources. The most abundant of these gases are methyl chloride, chloroform, dichloromethane, perchloroethylene, and trichloroethylene. Methyl chloride represents about 540 parts per trillion by volume (pptv) Cl, while the others together amount to about 120 pptv Cl. For methyl chloride and chloroform, both oceanic and land-based natural emissions have been identified. For the other gases, there is evidence of oceanic emissions, but the roles of the soils and land are not known and have not …