Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

2013

Projectiles

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Postcollision Effects In Target Ionization By Ion Impact At Large Momentum Transfer, Michael Schulz, B. Najjari, Alexander B. Voitkiv, Katharina R. Schneider, Xincheng Wang, Aaron C. Laforge, Renate Hubele, Johannes Goullon, Natalia Ferreira, Aditya H. Kelkar, Manfred Grieser, Robert Moshammer, Joachim Hermann Ullrich, Daniel Fischer Aug 2013

Postcollision Effects In Target Ionization By Ion Impact At Large Momentum Transfer, Michael Schulz, B. Najjari, Alexander B. Voitkiv, Katharina R. Schneider, Xincheng Wang, Aaron C. Laforge, Renate Hubele, Johannes Goullon, Natalia Ferreira, Aditya H. Kelkar, Manfred Grieser, Robert Moshammer, Joachim Hermann Ullrich, Daniel Fischer

Physics Faculty Research & Creative Works

We have measured and calculated fully differential cross sections for target ionization in 16-MeV O7++He and 24-MeV O8++Li collisions. As in previous studies, in the case of the He target we observe a pronounced forward shift in the angular distribution of the electrons relative to the direction of the momentum transfer q at small q (q < 1 a.u.). An unexpected result is that we also find a strong forward shift at large q (q > 2 a.u.), while at intermediate q this shift becomes very weak or even turns into a backward shift. For the Li target, in contrast, the forward shift monotonically increases with increasing q. These observations are qualitatively reproduced by our calculations. …


Comment On "Singly Ionizing 100-Mev/Amu C⁶⁺+He Collisions With Small Momentum Transfer", Michael Schulz, Robert Moshammer, Daniel Fischer, Joachim Hermann Ullrich Apr 2013

Comment On "Singly Ionizing 100-Mev/Amu C⁶⁺+He Collisions With Small Momentum Transfer", Michael Schulz, Robert Moshammer, Daniel Fischer, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

In a recent article, Kouzakov suggested that experimental resolution effects can be responsible for discrepancies between measured and calculated fully differential cross sections for the ionization of helium by fast C6+ impact. They further asserted that projectile-coherence effects have no influence on the measured cross sections. In this Comment, we reiterate that the experimental resolution can only explain part of the discrepancies. Furthermore, we note that the conclusion regarding the role of projectile coherence neglects potential interference between first- and higher-order transition amplitudes.


Picturing Electron Capture To The Continuum In The Transfer Ionization Of Intermediate-Energy He²⁺ Collisions With Argon, Ruitian Zhang, Xinwen Ma, Shaofeng Zhang, Xiaolong Zhu, Susmitha Akula, Don H. Madison, Bingsheng Li, Dongbin Qian, Wentian Feng, Dalong Guo, Huiping Liu, Shuncheng Yan, Pengju Zhang, Shenyue Xu, Ximeng Chen Jan 2013

Picturing Electron Capture To The Continuum In The Transfer Ionization Of Intermediate-Energy He²⁺ Collisions With Argon, Ruitian Zhang, Xinwen Ma, Shaofeng Zhang, Xiaolong Zhu, Susmitha Akula, Don H. Madison, Bingsheng Li, Dongbin Qian, Wentian Feng, Dalong Guo, Huiping Liu, Shuncheng Yan, Pengju Zhang, Shenyue Xu, Ximeng Chen

Physics Faculty Research & Creative Works

Electron emission occurring in transfer ionization for He2+ collisions with argon has been investigated using cold target recoil ion momentum spectroscopy. The double differential cross sections for electron capture to the continuum of the projectile (cusp-shaped electrons) are presented for collision energies from 17.5 to 75 keV/u. For an energy of 30 keV/u, we find a maximum in the experimental ratio of the cusp-shaped electron yield to the total electron yield. This result is explained in terms of the velocity matching between the projectile ion and the electron initially bound to the target. One of the important issues for …