Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

The Variability Of The Saturation Ratio In Clouds, Jesse C. Anderson Jan 2022

The Variability Of The Saturation Ratio In Clouds, Jesse C. Anderson

Dissertations, Master's Theses and Master's Reports

The saturation ratio determines the growth of cloud droplets by condensation and activation of aerosol particles. In a uniform environment, the interactions between the saturation ratio and cloud droplets are well understood. However, the presence of turbulent mixing causes spatial and temporal variability in the temperature, water vapor and the saturation ratio. When applied to a cloud, the variability in S has been shown to broaden the cloud droplet size distribution through each droplet having its own growth rate and history. When droplets grow by condensation or evaporation, water vapor and heat feedback with the environment, altering the distribution of …


Light Propagation Through A Turbulent Cloud: Comparison Of Measured And Computed Extinction, Eduardo Rodriguez-Feo Bermudez Jan 2019

Light Propagation Through A Turbulent Cloud: Comparison Of Measured And Computed Extinction, Eduardo Rodriguez-Feo Bermudez

Dissertations, Master's Theses and Master's Reports

Remote sensing techniques used for measurement of atmospheric cloud properties operate under the notion that light extinction caused by scattering and absorption is exponential due to Beer-Lambert law. This is expected to be valid for a uni-form medium with no spatial correlations between particle position. The aim of this research was to show that under turbulent conditions, cloud droplets cannot be interpreted as non-correlated, and in turn will exhibit a lower than exponential light decay from scattering. The research took place at the MTU π-Chamber laboratory. A temperature difference between the floor and ceiling of the chamber was applied to …


Investigation Of Microphysical Properties Of Laboratory And Atmospheric Clouds Using Digital In-Line Holography, Neel Desai Jan 2018

Investigation Of Microphysical Properties Of Laboratory And Atmospheric Clouds Using Digital In-Line Holography, Neel Desai

Dissertations, Master's Theses and Master's Reports

In this study, we attempt to perform in-cloud measurements, both in the laboratory using the Michigan Tech $\Pi$-chamber and in the atmosphere via the CSET field campaign. Atmospheric turbulence is believed to play a critical role in the growth, development and dissipation of clouds and it is important to study its effect in order to better understand and predict cloud properties such as albedo and lifetime. We use digital in-line holography to measure the effect of turbulence on cloud microphysical properties such as variations in droplet number concentration and droplet or ice particle size. In the first half, we study …


The Intrinsic Variability Of The Water Vapor Saturation Ratio Due To Mixing, Jesse Anderson Jan 2017

The Intrinsic Variability Of The Water Vapor Saturation Ratio Due To Mixing, Jesse Anderson

Dissertations, Master's Theses and Master's Reports

The water vapor concentration plays an important role for many atmospheric processes. The mean concentration is key to understand water vapor's effect on the climate as a greenhouse gas. The fluctuations about the mean are important to understand heat fluxes between Earth's surface and the boundary layer. These fluctuations are linked to turbulence that is present in the boundary layer. Turbulent conditions are simulated in Michigan Tech’s multiphase, turbulent reaction chamber, the π chamber. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh- Bénard convection at several turbulent intensities. These were used to calculate the saturation ratio, …