Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Investigating Ice Nucleation At Negative Pressures Using Molecular Dynamics: A First Order Approximation Of The Dependence Of Ice Nucleation Rate On Pressure, Elise Rosky Jan 2021

Investigating Ice Nucleation At Negative Pressures Using Molecular Dynamics: A First Order Approximation Of The Dependence Of Ice Nucleation Rate On Pressure, Elise Rosky

Dissertations, Master's Theses and Master's Reports

Atmospheric scientists and climate modelers are faced with uncertainty around the process of ice production in clouds. While significant progress has been made in predicting homogeneous and heterogeneous ice nucleation rates as a function of temperature, recent experiments have shown that ice nucleation rates can be enhanced without decreasing temperature, through various mechanical agitations. One hypothesis for these findings is that mechanisms of stretching water and thereby inducing negative pressure in the liquid could lead to an increase in freezing rate. To better understand the viability of this concept, the effect of negative pressure on ice nucleation rates needs to …


Physicochemical Properties Of Atmospheric Aerosols And Their Effect On Ice Cloud Formation, Nurun Nahar Lata Jan 2021

Physicochemical Properties Of Atmospheric Aerosols And Their Effect On Ice Cloud Formation, Nurun Nahar Lata

Dissertations, Master's Theses and Master's Reports

Atmospheric aerosols play a vital role in the Earth's energy budget-directly by scattering and absorbing solar radiation and indirectly by acting as cloud condensation nuclei and ice-nucleating particles [1, 2]. The cloud formation potential of aerosol is driven by multiple factors, including surface properties, size distribution, composition, mixing state, phase state, and morphology [3]. The interaction of aerosols with clouds alters the aerosol's physicochemical properties. Those properties can also evolve during transport due to atmospheric processing, in turn, affect the aerosol's ice nucleation and cloud formation activities. This thesis presents experimental studies to understand the role of physicochemical properties of …


Laboratory, Computational And Theoretical Investigations Of Ice Nucleation And Its Implications For Mixed Phase Clouds, Fan Yang Jan 2017

Laboratory, Computational And Theoretical Investigations Of Ice Nucleation And Its Implications For Mixed Phase Clouds, Fan Yang

Dissertations, Master's Theses and Master's Reports

Ice particles in atmospheric clouds play an important role in determining cloud lifetime, precipitation and radiation. It is therefore important to understand the whole life cycle of ice particles in the atmosphere, e.g., where they come from (nucleation), how they evolve (growth), and where they go (precipitation). Ice nucleation is the crucial step for ice formation, and in this study, we will mainly focus on ice nucleation in the lab and its effect on mixed-phase stratiform clouds.

In the first half of this study, we investigate the relevance of moving contact lines (i.e., the region where three or more phases …


Morphology And Mixing State Of Atmospheric Particles: Links To Optical Properties And Cloud Processing, Swarup China Jan 2014

Morphology And Mixing State Of Atmospheric Particles: Links To Optical Properties And Cloud Processing, Swarup China

Dissertations, Master's Theses and Master's Reports - Open

Atmospheric particles are ubiquitous in Earth’s atmosphere and impact the environment and the climate while affecting human health and Earth’s radiation balance, and degrading visibility. Atmospheric particles directly affect our planet’s radiation budget by scattering and absorbing solar radiation, and indirectly by interacting with clouds. Single particle morphology (shape, size and internal structure) and mixing state (coating by organic and inorganic material) can significantly influence the particle optical properties as well as various microphysical processes, involving cloud-particle interactions and including heterogeneous ice nucleation and water uptake. Conversely, aerosol cloud processing can affect the morphology and mixing of the particles. For …