Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Embry-Riddle Aeronautical University

Middle atmosphere—constituent transport and chemistry

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Climatology And Modeling Of Quasi-Monochromatic Atmospheric Gravity Waves Observed Over Urbana Illinois, J. H. Hecht, R. L. Walterscheid, Michael P. Hickey Ph.D., S. J. Franke Mar 2001

Climatology And Modeling Of Quasi-Monochromatic Atmospheric Gravity Waves Observed Over Urbana Illinois, J. H. Hecht, R. L. Walterscheid, Michael P. Hickey Ph.D., S. J. Franke

Publications

From analyzing nine months of airglow imaging observations of atmospheric gravity waves (AGWs) over Adelaide, Australia (35°S) [Walterscheid et al., 1999] have proposed that many of the quasi-monochromatic waves seen in the images were primarily thermally ducted. Here are presented 15 months of observations, from February 1996 to May 1997, for AGW frequency and propagation direction from a northern latitude site, Urbana Illinois (40°N). As Adelaide, Urbana is geographically distant from large orographic features. Similar to what was found in Adelaide, the AGWs seem to originate from a preferred location during the time period around summer solstice. In …


Secular Variations Of Atomic Oxygen In The Mesopause Region Induced By Transient Gravity Wave Packets, Michael P. Hickey Ph.D., R. L. Walterscheid, Philip G. Richards Nov 2000

Secular Variations Of Atomic Oxygen In The Mesopause Region Induced By Transient Gravity Wave Packets, Michael P. Hickey Ph.D., R. L. Walterscheid, Philip G. Richards

Publications

We employ a 2-dimensional, time-dependent, fully nonlinear model of minor species in the mesopause region and our Spectral Full-Wave Model to simulate the response of atomic oxygen (O) to a gravity wave packet in the mesopause region. We demonstrate that gravity waves affect the time-averaged distribution of O in the mesosphere and lower thermosphere (MLT) region through the constituent fluxes the waves induce. Our conclusions are based on simulations of two wave packets that violate the non-acceleration conditions through transience and dissipation. The net cycle-averaged effect of the waves is to significantly increase (by as much as 50%) the O …