Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 40

Full-Text Articles in Physical Sciences and Mathematics

Gravity Waves Generated By The Hunga Tonga-Hunga Ha‘Apai Volcanic Eruption And Their Global Propagation In The Mesosphere/Lower Thermosphere Observed By Meteor Radars And Modeled With The High-Altitude General Mechanistic Circulation Model, Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Diego Janches, Zishun Qiao, Et.Al Oct 2023

Gravity Waves Generated By The Hunga Tonga-Hunga Ha‘Apai Volcanic Eruption And Their Global Propagation In The Mesosphere/Lower Thermosphere Observed By Meteor Radars And Modeled With The High-Altitude General Mechanistic Circulation Model, Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Diego Janches, Zishun Qiao, Et.Al

Publications

The Hunga Tonga-Hunga Ha‘apai volcano erupted on 15th January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanic- caused gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic General Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward propagating gravity wave packet with an observed phase speed of 240±5.7 m/s and a westward propagating gravity wave with an observed phase speed of 166.5 ±6.4 m/s. We identified these waves in the HIAMCM and obtained …


Statistical Characteristics Of High-Frequency Gravity Waves Observed By An Airglow Imager At Andes Lidar Observatory, Alan Z. Liu, Bing Cao May 2022

Statistical Characteristics Of High-Frequency Gravity Waves Observed By An Airglow Imager At Andes Lidar Observatory, Alan Z. Liu, Bing Cao

Publications

The long-term statistical characteristics of high-frequency quasi-monochromatic gravity waves are presented using multi-year airglow images observed at Andes Lidar Observatory (ALO, 30.3° S, 70.7° W) in northern Chile. The distribution of primary gravity wave parameters including horizontal wavelength, vertical wavelength, intrinsic wave speed, and intrinsic wave period are obtained and are in the ranges of 20–30 km, 15–25 km, 50–100 m s−1, and 5–10 min, respectively. The duration of persistent gravity wave events captured by the imager approximately follows an exponential distribution with an average duration of 7–9 min. The waves tend to propagate against the local background winds and …


3d Numerical Simulation Of Secondary Wave Generation From Mountain Wave Breaking Over Europe, Christopher J. Heale, Katrina Bossert, Sharon L. Vadas Feb 2022

3d Numerical Simulation Of Secondary Wave Generation From Mountain Wave Breaking Over Europe, Christopher J. Heale, Katrina Bossert, Sharon L. Vadas

Publications

In this paper, we simulate an observed mountain wave event over central Europe and investigate the subsequent generation, propagation, phase speeds and spatial scales, and momentum deposition of secondary waves under three different tidal wind conditions. We find the mountain wave breaks just below the lowest critical level in the mesosphere. As the mountain wave breaks, it extends outwards along the phases and fluid associated with the breaking flows downstream of its original location by 500–1,000 km. The breaking generates a broad range of secondary waves with horizontal scales ranging from the mountain wave instability scales (20–300 km), to multiples …


Comparison Of Mlt Momentum Fluxes Over The Andes At Four Different Latitudinal Sectors Using Multistatic Radar Configurations, J. Federico Conte, Alan Liu, Zishun Qiao, Jorge L. Chau, David C. Fritts, José L. Hormaechea, Jacobo O. Salvador, Marco A. Milla Feb 2022

Comparison Of Mlt Momentum Fluxes Over The Andes At Four Different Latitudinal Sectors Using Multistatic Radar Configurations, J. Federico Conte, Alan Liu, Zishun Qiao, Jorge L. Chau, David C. Fritts, José L. Hormaechea, Jacobo O. Salvador, Marco A. Milla

Publications

The middle atmosphere over South America, particularly above the Andes mountain range, is known as one of the most dynamically active regions in the world. Previous studies have investigated wave dynamics at mesosphere and lower thermosphere (MLT) altitudes within this region, but only a handful of them have made use of continuous measurements provided by specular meteor radars (SMRs). Furthermore, it was only until recently that MLT horizontal wind gradients were estimated for the first time using Spread Spectrum Interferometric Multistatic meteor radar Observing Network (SIMONe) Argentina, a multistatic SMR network located in southern Patagonia. By observing larger amounts of …


A Quasi-27-Day Oscillation Activity From The Troposphere To The Mesosphere And Lower Thermosphere At Low Latitudes, Hao Cheng, Alan Z. Liu, Kaiming Huang, Shaodong Zhang, Chunming Huang, Yun Gong Oct 2021

A Quasi-27-Day Oscillation Activity From The Troposphere To The Mesosphere And Lower Thermosphere At Low Latitudes, Hao Cheng, Alan Z. Liu, Kaiming Huang, Shaodong Zhang, Chunming Huang, Yun Gong

Publications

Using meteor radar, radiosonde observations and MERRA-2 reanalysis data from 12 August to 31 October 2006, we report a dynamical coupling from the tropical lower atmosphere to the mesosphere and lower thermosphere through a quasi-27-day intraseasonal oscillation (ISO). It is interesting that the quasi-27-day ISO is observed in the troposphere, stratopause and mesopause regions, exhibiting a three-layer structure. In the MLT, the amplitude in the zonal wind increases from about 4 ms−1 at 90 km to 15 ms−1 at 100 km, which is diferent from previous observations that ISOs occurs generally in winter with an amplitude peak at about 80–90 …


Gravity Waves, Na Lidar, Yafang Guo, Alan Z. Liu Dec 2020

Gravity Waves, Na Lidar, Yafang Guo, Alan Z. Liu

Publications

Vertical energy transports due to dissipating gravity waves in the mesopause region (85–100 km) are analyzed using over 400 h of observational data obtained from a narrow-band sodium wind-temperature lidar located at Andes Lidar Observatory (ALO), Cerro Pachón (30.25°S, 70.73°W), Chile. Sensible heat flux is directly estimated using measured temperature and vertical wind; energy flux is estimated from the vertical wavenumber and frequency spectra of temperature perturbations; and enthalpy flux is derived based on its relationship with sensible heat and energy fluxes. Sensible heat flux is mostly downward throughout the region. Enthalpy flux exhibits an annual oscillation with maximum downward …


Secondary Gravity Waves Generated By Breaking Mountain Waves Over Europe, Christopher J. Heale, Jonathan B. Snively, Katrina Bossert, S. L. Vadas, Lars Hoffmann, A. Dörnbrack, G. Stober, C. Jacobi Feb 2020

Secondary Gravity Waves Generated By Breaking Mountain Waves Over Europe, Christopher J. Heale, Jonathan B. Snively, Katrina Bossert, S. L. Vadas, Lars Hoffmann, A. Dörnbrack, G. Stober, C. Jacobi

Publications

A strong mountain wave, observed over Central Europe on 12 January 2016, is simulated in 2D under two fixed background wind conditions representing opposite tidal phases. The aim of the simulation is to investigate the breaking of the mountain wave and subsequent generation of nonprimary waves in the upper atmosphere. The model results show that the mountain wave first breaks as it approaches a mesospheric critical level creating turbulence on horizontal scales of 8–30 km. These turbulence scales couple directly to horizontal secondary waves scales, but those scales are prevented from reaching the thermosphere by the tidal winds, which act …


Modeling Of Ionospheric Responses To Atmospheric Acoustic And Gravity Waves Driven By The 2015 Nepal M W 7.8 Gorkha Earthquake, P. A. Inchin, J. B. Snively, M. D. Zettergren, A. Komjathy, O. P. Verkhoglyadova, S. Tulasi Ram Feb 2020

Modeling Of Ionospheric Responses To Atmospheric Acoustic And Gravity Waves Driven By The 2015 Nepal M W 7.8 Gorkha Earthquake, P. A. Inchin, J. B. Snively, M. D. Zettergren, A. Komjathy, O. P. Verkhoglyadova, S. Tulasi Ram

Publications

Near- and far-field ionospheric responses to atmospheric acoustic and gravity waves (AGWs) generated by surface displacements during the 2015 Nepal 7.8 Gorkha earthquake are simulated. Realistic surface displacements driven by the earthquake are calculated in three-dimensional forward seismic waves propagation simulation, based on kinematic slip model. They are used to excite AGWs at ground level in the direct numerical simulation of three-dimensional nonlinear compressible Navier-Stokes equations with neutral atmosphere model, which is coupled with a two-dimensional nonlinear multifluid electrodynamic ionospheric model. The importance of incorporating earthquake rupture kinematics for the simulation of realistic coseismic ionospheric disturbances (CIDs) is demonstrated and …


Gravity Wave Ducting Observed In The Mesosphere Over Jicamarca, Peru, Gerald A. Lehmacher, Christopher J. Heale, Jonathan B. Snively, Erhan Kudeki, Pablo M. Reyes, Kiwook Lee Apr 2019

Gravity Wave Ducting Observed In The Mesosphere Over Jicamarca, Peru, Gerald A. Lehmacher, Christopher J. Heale, Jonathan B. Snively, Erhan Kudeki, Pablo M. Reyes, Kiwook Lee

Publications

Short-period gravity waves are ubiquitous in the mesosphere, but the vertical structures of their perturbations are difficult to observe. The Jicamarca 50-MHz very high frequency radar allows observations of winds and turbulent scatter with high temporal and vertical resolution. We present a case of a quasi-monochromatic gravity wave with period 520 (±40) s that is likely ducted below a southward wind jet between 68 and 74 km. Above this layer of evanescence, a northward wind enables it to emerge into a more stable layer, where it is refracted to a short vertical wavelength of 2.2 (±0.2) km; data show evidence …


Observations Of Reduced Turbulence And Wave Activity In The Arctic Middle Atmosphere Following The January 2015 Sudden Stratospheric Warming, Colin C. Triplett, Aroh Barjatya, Jintai Li, Richard L. Collins, Gerald A. Lehmacher, David C. Fritts, Boris Strelnikov, Franz-Josef Lübken, Brentha Thurairajah, V. Lynn Harvey, Donald L. Hampton, Roger H. Varney Nov 2018

Observations Of Reduced Turbulence And Wave Activity In The Arctic Middle Atmosphere Following The January 2015 Sudden Stratospheric Warming, Colin C. Triplett, Aroh Barjatya, Jintai Li, Richard L. Collins, Gerald A. Lehmacher, David C. Fritts, Boris Strelnikov, Franz-Josef Lübken, Brentha Thurairajah, V. Lynn Harvey, Donald L. Hampton, Roger H. Varney

Publications

Measurements of turbulence and waves were made as part of the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX) on the night of 25–26 January 2015 at Poker Flat Research Range, Chatanika, Alaska (65°N, 147°W). Rocket-borne ionization gauge measurements revealed turbulence in the 70- to 88-km altitude region with energy dissipation rates between 0.1 and 24 mW/kg with an average value of 2.6 mW/kg. The eddy diffusion coefficient varied between 0.3 and 134 m2/s with an average value of 10 m2/s. Turbulence was detected around mesospheric inversion layers (MILs) in both the topside and bottomside of the MILs. These …


Momentum Flux Spectra Of A Mountain Wave Event Over New Zealand, Katrina Bossert, David C. Fritts, Christopher J. Heale, Stephen D. Eckermann, John M. C. Plane, Jonathan B. Snively, Bifford P. Williams, Iain M. Reid, Damian J. Murphy, Andrew J. Spargo, Andrew D. Mackinnon Sep 2018

Momentum Flux Spectra Of A Mountain Wave Event Over New Zealand, Katrina Bossert, David C. Fritts, Christopher J. Heale, Stephen D. Eckermann, John M. C. Plane, Jonathan B. Snively, Bifford P. Williams, Iain M. Reid, Damian J. Murphy, Andrew J. Spargo, Andrew D. Mackinnon

Publications

During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) 13 July 2014 research flight over the South Island of New Zealand, a multiscale spectrum of mountain waves (MWs) was observed. High-resolution measurements of sodium densities were available from ~70 to 100 km for the duration of this flight. A comprehensive technique is presented for obtaining temperature perturbations, T′, from sodium mixing ratios over a range of altitudes, and these T′ were used to calculate the momentum flux (MF) spectra with respect to horizontal wavelengths, λH, for each flight segment. Spectral analysis revealed MWs with spectral power centered at λH of ~80, …


Localization Effects On The Dissipation Of Gravity Wave Packets In The Upper Mesophere And Lower Thermosphere, C. J. Heale, R. L. Walterscheid, J. B. Snively Sep 2018

Localization Effects On The Dissipation Of Gravity Wave Packets In The Upper Mesophere And Lower Thermosphere, C. J. Heale, R. L. Walterscheid, J. B. Snively

Publications

Gravity waves not subject to breaking or filtering will dissipate due to viscosity and thermal conduction in the thermosphere. However, the evolutions of wave packets, and the altitudes they reach, are highly dependent upon the spectral content. In this paper, a 2‐D numerical model is used to investigate the effect of spatial localization (and thus spectral content) of a wave packet on its dissipation, dispersion, and spectral evolution. It is found that most wave packets launched below the thermosphere evolve to smaller central vertical wavelengths as the faster, longer vertical wavelength components reach the dissipative thermosphere and are removed first, …


A Comparison Of Small- And Medium-Scale Gravity Wave Interactions In The Linear And Nonlinear Limits, C. J. Heale, J. B. Snively Jan 2018

A Comparison Of Small- And Medium-Scale Gravity Wave Interactions In The Linear And Nonlinear Limits, C. J. Heale, J. B. Snively

Publications

A 2-D numerical model is used to compare interactions between small-scale (SS) (25 km horizontal wavelength, 10 min period) and medium-scale (MS, 250 km horizontal wavelength, 90 min period) gravity waves (GWs) in the Mesosphere and Lower Thermosphere within three different limits. First, the MS wave is specified as a static, horizontally homogeneous ambient atmospheric feature; second, a linear interaction is investigated between excited, time-dependent SS and MS waves, and third, a fully nonlinear interaction at finite amplitudes is considered. It is found that the finite-amplitude wave interactions can cause SS wave breaking aligned with the phase fronts of the …


First Search For Nontensorial Gravitational Waves From Known Pulsars, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, B. Hughey, J. W. W. Pratt, E. Schmidt, S. G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, Et Al. Jan 2018

First Search For Nontensorial Gravitational Waves From Known Pulsars, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, B. Hughey, J. W. W. Pratt, E. Schmidt, S. G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper …


Unexpected Occurrence Of Mesospheric Frontal Gravity Wave Events Over The South Pole (90 Degrees S), P.-D. Pautet, M. J. Taylor, J. B. Snively, C. Solorio Jan 2018

Unexpected Occurrence Of Mesospheric Frontal Gravity Wave Events Over The South Pole (90 Degrees S), P.-D. Pautet, M. J. Taylor, J. B. Snively, C. Solorio

Publications

Since 2010, Utah State University has operated an infrared Advanced Mesospheric Temperature Mapper at the Amundsen–Scott South Pole station to investigate the upper atmosphere dynamics and temperature deep within the vortex. A surprising number of “frontal” gravity wave events (86) were recorded in the mesospheric OH(3,1) band intensity and rotational temperature images (typical altitude of ~87 km) during four austral winters (2012–2015). These events are gravity waves (GWs) characterized by a sharp leading wave front followed by a quasi-monochromatic wave train that grows with time. A particular subset of frontal gravity wave events has been identified in the past (Dewan …


Nonlinear Gravity Wave Forcing As A Source Of Acoustic Waves In The Mesosphere, Thermosphere, And Ionosphere, J. B. Snively Dec 2017

Nonlinear Gravity Wave Forcing As A Source Of Acoustic Waves In The Mesosphere, Thermosphere, And Ionosphere, J. B. Snively

Publications

Numerical simulations demonstrate theoretical predictions that gravity waves with short periods (∼4–8 min) in the mesosphere and lower thermosphere may force secondary acoustic waves, with harmonic periods (∼2-4 minutes), that can reach detectable amplitudes in the thermosphere and ionosphere. The mechanism is through their vertical fluxes of vertical momentum, which lead to forcing as they are disrupted by varying stratification or instability. This is shown likely to occur where horizontally or radially opposing gravity waves interact at large amplitudes, such as above large convective sources, and after overturning. Evanescence and reflection of the waves can lead to further enhancements of …


Gw170817: Observation Of Gravitational Waves From A Binary Neutron Star Inspiral, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al. Oct 2017

Gw170817: Observation Of Gravitational Waves From A Binary Neutron Star Inspiral, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0 × 104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M⊙, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17–1.60 M⊙, with the total …


Gw170814: A Three-Detector Observation Of Gravitational Waves From A Binary Black Hole Coalescence, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, Michele Zanolin, Et Al. Oct 2017

Gw170814: A Three-Detector Observation Of Gravitational Waves From A Binary Black Hole Coalescence, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, Michele Zanolin, Et Al.

Publications

On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲ 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5 + 5.7 − 3.0 M ⊙ and 25.3 + 2.8 − 4.2 M ⊙ (at the 90% credible level). The luminosity distance of the source is 540 + 130 − 210 Mpc, corresponding …


Secondary Gravity Wave Generation Over New Zealand During The Deepwave Campaign, Katrina Bossert, Christopher G. Kruse, Christopher J. Heale, David C. Fritts, Bifford P. Williams, Jonathan B. Snively, Pierre-Dominique Pautet, Michael J. Taylor Aug 2017

Secondary Gravity Wave Generation Over New Zealand During The Deepwave Campaign, Katrina Bossert, Christopher G. Kruse, Christopher J. Heale, David C. Fritts, Bifford P. Williams, Jonathan B. Snively, Pierre-Dominique Pautet, Michael J. Taylor

Publications

Multiple events during the Deep Propagating Gravity Wave Experiment measurement program revealed mountain wave (MW) breaking at multiple altitudes over the Southern Island of New Zealand. These events were measured during several research flights from the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft, utilizing a Rayleigh lidar, an Na lidar, and an Advanced Mesospheric Temperature Mapper simultaneously. A flight on 29 June 2014 observed MWs with horizontal wavelengths of ~80–120 km breaking in the stratosphere from ~10 to 50 km altitude. A flight on 13 July 2014 observed a horizontal wavelength of ~200–240 km MW extending from …


Numerical Modeling Of A Multiscale Gravity Wave Event And Its Airglow Signatures Over Mount Cook, New Zealand, During The Deepwave Campaign, C. J. Heale, K. Bossert, J. B. Snively, D. C. Fritts, P. -D. Pautet, M. J. Taylor Jan 2017

Numerical Modeling Of A Multiscale Gravity Wave Event And Its Airglow Signatures Over Mount Cook, New Zealand, During The Deepwave Campaign, C. J. Heale, K. Bossert, J. B. Snively, D. C. Fritts, P. -D. Pautet, M. J. Taylor

Publications

A 2-D nonlinear compressible model is used to simulate a large-amplitude, multiscale mountain wave event over Mount Cook, NZ, observed as part of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign and to investigate its observable signatures in the hydroxyl (OH) layer. The campaign observed the presence of a �x = 200 km mountain wave as part of the 22nd research flight with amplitudes of >20 K in the upper stratosphere that decayed rapidly at airglow heights. Advanced Mesospheric Temperature Mapper (AMTM) showed the presence of small-scale (25–28 km) waves within the warm phase of the large mountain wave. The …


Observation And Modeling Of Gravity Wave Propagation Through Reflection And Critical Layers Above Andes Lidar Observatory At Cerro Pachón, Chile, Bing Cao, Christopher J. Heale, Yafang Guo, Alan Z. Liu, Jonathan B. Snively Nov 2016

Observation And Modeling Of Gravity Wave Propagation Through Reflection And Critical Layers Above Andes Lidar Observatory At Cerro Pachón, Chile, Bing Cao, Christopher J. Heale, Yafang Guo, Alan Z. Liu, Jonathan B. Snively

Publications

A complex gravity wave event was observed from 04:30 to 08:10 UTC on 16 January 2015 by a narrow-band sodium lidar and an all-sky airglow imager located at Andes Lidar Observatory (ALO) in Cerro Pachón (30.25∘S, 70.73∘W), Chile. The gravity wave packet had a period of 18–35 min and a horizontal wavelength of about 40–50 km. Strong enhancements of the vertical wind perturbation, exceeding10 m s−1, were found at ∼90 km and ∼103 km, consistent with nearly evanescent wave behavior near a reflection layer. A reduction in vertical wavelength was found as the phase speed approached the background wind speed …


Directly Comparing Gw150914 With Numerical Solutions Of Einstein's Equations For Binary Black Hole Coalescence, B. P. Abbott, K. Gill, B. Hughey, M. J. Szczepańczyk, M. Zanolin, Et Al. Sep 2016

Directly Comparing Gw150914 With Numerical Solutions Of Einstein's Equations For Binary Black Hole Coalescence, B. P. Abbott, K. Gill, B. Hughey, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations—including sources with two independent, precessing spins—we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed …


Self-Accleration And Instability Of Gravity Wave Packets: 1. Effects Of Temporal Localization, David C. Fritts, Brian Laughman, Thomas S. Lund, Jonathan B. Snively Sep 2015

Self-Accleration And Instability Of Gravity Wave Packets: 1. Effects Of Temporal Localization, David C. Fritts, Brian Laughman, Thomas S. Lund, Jonathan B. Snively

Publications

"An anelastic numerical model is used to explore the dynamics accompanying the attainment of large amplitudes by gravity waves (GWs) that are localized in altitude and time. GW momentum transport induces mean flow variations accompanying a GW packet that grows exponentially with altitude, is localized in altitude, and induces significant GW phase speed, and phase, variations across the GW packet. These variations arise because the GW occupies the region undergoing accelerations, with the induced phase speed variations referred to as “self-acceleration.” Results presented here reveal that self-acceleration of a GW packet localized in time and altitude ultimately leads to stalling …


Gravity Wave Propagation Through A Vertically And Horizontally Inhomogeneous Background Wind, C. J. Heale, J. B. Snively Jun 2015

Gravity Wave Propagation Through A Vertically And Horizontally Inhomogeneous Background Wind, C. J. Heale, J. B. Snively

Publications

"A combination of ray theory and 2-D time-dependent simulations is used to investigate the linear effects of a time-dependent, vertically, and horizontally inhomogeneous background horizontal wind field on the propagation, refraction, and reflection of small-scale gravity wave packets. Interactions between propagating waves of different scales are likely to be numerous and important. We find that a static medium-scale wave wind field of sufficient amplitude can channel and/or critical-level filter a small-scale wave or cause significant reflection, depending upon both waves' parameters. However, the inclusion of a time-dependent phase progression of the medium-scale wave can reduce energy loss through critical-level filtering …


Numerical Simulation Of The Long-Range Propagation Of Gravity Wave Packets At High Latitudes, C. J. Heale, J. B. Snively, M. P. Hickey Oct 2014

Numerical Simulation Of The Long-Range Propagation Of Gravity Wave Packets At High Latitudes, C. J. Heale, J. B. Snively, M. P. Hickey

Publications

We use a 2-D, nonlinear, time-dependent numerical model to simulate the propagation of wave packets under average high latitude, winter conditions. We investigate the ability of waves to propagate large horizontal distances, depending on their direction of propagation relative to the average modeled ambient winds. Wave sources were specified to represent the following: (1) the most common wave parameters inferred from observations of Nielsen et al. (2009) ((18 km λᵪ , 7.5 min period), (2) waves consistent with the average phase speed observed (40 m/s) but outlying horizontal wavelength and period values (40 km λᵪ , 17 min period), and …


Numerical And Statistical Evidence For Long-Range Ducted Gravity Wave Propagation Over Halley, Antarctica, J. B. Snively, K. Nielsen, M. P. Hickey, C. J. Heale, M. J. Taylor, T. Moffat-Griffin Sep 2013

Numerical And Statistical Evidence For Long-Range Ducted Gravity Wave Propagation Over Halley, Antarctica, J. B. Snively, K. Nielsen, M. P. Hickey, C. J. Heale, M. J. Taylor, T. Moffat-Griffin

Publications

Abundant short-period, small-scale gravity waves have been identified in the mesosphere and lower thermosphere over Halley, Antarctica, via ground-based airglow image data. Although many are observed as freely propagating at the heights of the airglow layers, new results under modeled conditions reveal that a significant fraction of these waves may be subject to reflections at altitudes above and below.The waves may at times be trapped within broad thermal ducts, spanning from the tropopause or stratopause to the base of the thermosphere (~140 km), which may facilitate long-range propagation (~1000s of km) under favorable wind conditions.


Mesospheric Hydroxyl Airglow Signatures Of Acoustic And Gravity Waves Generated By Transient Tropospheric Forcing, J. B. Snively Sep 2013

Mesospheric Hydroxyl Airglow Signatures Of Acoustic And Gravity Waves Generated By Transient Tropospheric Forcing, J. B. Snively

Publications

"Numerical model results demonstrate that acoustic waves generated by tropospheric sources may produce cylindrical “concentric ring” signatures in the mesospheric hydroxyl airglow layer. They may arrive as precursors to upward propagating gravity waves, generated simultaneously by the same sources, and produce strong temperature perturbations in the thermosphere above. Transient and short-lived, the acoustic wave airglow intensity and temperature signatures are predicted to be detectable by ground-based airglow imaging systems and may provide new insight into the forcing of the upper atmosphere from below."--From publisher's website.


Oh And Oi Airglow Layer Modulation By Ducted Short-Period Gravity Waves: Effects Of Trapping Altitude, Jonathan B. Snively, Victor P. Pasko, Michael J. Taylor Nov 2010

Oh And Oi Airglow Layer Modulation By Ducted Short-Period Gravity Waves: Effects Of Trapping Altitude, Jonathan B. Snively, Victor P. Pasko, Michael J. Taylor

Publications

Perturbations to the OH and OI [O(1S) 557.7 nm] airglow layers by ducted gravity waves near the Brunt‐Väisälä period are investigated using a 2‐D numerical model. Airglow signatures of these waves are strongly determined by perturbations of O, O3, and H, which exhibit peak densities near and above mesopause. Strong periodic vertical wind components of short‐period gravity waves induce opposite relative density perturbations above and below the layer density peaks. Airglow signatures for ducted waves depend on the specific vertical shapes and altitudes of the wave packets relative to ambient species density profiles; waves perturbing only the bottoms or tops …


Atmospheric Airglow Fluctuations Due To A Tsunami‐Driven Gravity Wave Disturbance, Michael P. Hickey Ph.D., G. Schubert, R. L. Walterscheid Jun 2010

Atmospheric Airglow Fluctuations Due To A Tsunami‐Driven Gravity Wave Disturbance, Michael P. Hickey Ph.D., G. Schubert, R. L. Walterscheid

Publications

A spectral full‐wave model is used to study the upward propagation of a gravity wave disturbance and its effect on atmospheric nightglow emissions. Gravity waves are generated by a surface displacement that mimics a tsunami having a maximum amplitude of 0.5 m, a characteristic horizontal wavelength of 400 km, and a horizontal phase speed of 200 m/s. The gravity wave disturbance can reach F region altitudes before significant viscous dissipation occurs. The response of the OH Meinel nightglow in the mesopause region (∼87 km altitude) produces relative brightness fluctuations, which are ∼1% of the mean for overhead viewing. The wave …


Gravity Wave Ducting In The Upper Mesosphere And Lower Thermosphere Duct System, R. L. Walterscheid, Michael P. Hickey Ph.D. Oct 2009

Gravity Wave Ducting In The Upper Mesosphere And Lower Thermosphere Duct System, R. L. Walterscheid, Michael P. Hickey Ph.D.

Publications

We report on a numerical study of gravity wave propagation in a pair of ducts located in a region where dramatic changes in the airglow most likely associated with ducted wave trains are observed. We examine ducting in an upper mesosphere inversion (INV) and an always present lower thermosphere stable layer (LTD) for a range of phase speeds and horizontal wavelengths characteristic of ducting events. We analyze the propagation and modal structure of ducted waves for backgrounds with increasing realism, starting with a climatological temperature profile where only the LTD is present. In succession, we add the INV based on …