Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Approaching Quantum-Limited Electrometry In The Single-Photon Regime, Sisira Kanhirathingal May 2022

Approaching Quantum-Limited Electrometry In The Single-Photon Regime, Sisira Kanhirathingal

Dartmouth College Ph.D Dissertations

Mesoscopic quantum systems currently serve as essential building blocks in many quantum information and metrology devices. This thesis investigates the potential of quantum-limited detection in a mesoscopic electrometer named the cavity-embedded Cooper pair transistor (cCPT). As one application, this charge detector can act as the basis for an optomechanical system in the single-photon strong coupling regime. The realization of this scheme would entail near quantum-limited, ultra-sensitive electrometry at the single-photon level, the feasibility of which is studied at length in this thesis.

On the one hand, we approach this question using a fundamental, first-principles study, where an operator scattering model …


Approach To Accurately Measuring The Speed Of Optical Precursors, Chuan-Feng Li, Zong-Quan Zhou, Heejeong Jeong, Guang-Can Guo Oct 2011

Approach To Accurately Measuring The Speed Of Optical Precursors, Chuan-Feng Li, Zong-Quan Zhou, Heejeong Jeong, Guang-Can Guo

Dartmouth Scholarship

Precursors can serve as a bound on the speed of information with dispersive medium. We propose a method to identify the speed of optical wavefronts using polarization-based interference in a solid-state device, which can bound the accuracy of the speed of wavefronts to less than 10−4 with conventional experimental conditions. Our proposal may have important implications for optical communications and fast information processing.


Selective Decay And Coherent Vortices In Two-Dimensional Incompressible Turbulence, William H. Matthaeus, W. Troy Stribling, Daniel Martinez, Sean Oughton, David Montgomery May 1991

Selective Decay And Coherent Vortices In Two-Dimensional Incompressible Turbulence, William H. Matthaeus, W. Troy Stribling, Daniel Martinez, Sean Oughton, David Montgomery

Dartmouth Scholarship

Numerical solution of two-dimensional incompressible hydrodynamics shows that states of a near-minimal ratio of enstrophy to energy can be attained in times short compared with the flow decay time, confirming the simplest turbulent selective decay conjecture, and suggesting that coherent vortex structures do not terminate nonlinear processes. After all possible vortex mergers occur, the vorticity attains a particlelike character, suggested by the late-time similarity of the streamlines to Ewald potential contours.