Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

The Ocean And Climate Change: Stommel's Conceptual Model, James Walsh Feb 2019

The Ocean And Climate Change: Stommel's Conceptual Model, James Walsh

CODEE Journal

The ocean plays a major role in our climate system and in climate change. In this article we present a conceptual model of the Atlantic Meridional Overturning Circulation (AMOC), an important component of the ocean's global energy transport circulation that has, in recent times, been weakening anomalously. Introduced by Henry Stommel, the model results in a two-dimensional system of first order ODEs, which we explore via Mathematica. The model exhibits two stable regimes, one having an orientation aligned with today's AMOC, and the other corresponding to a reversal of the AMOC. This material is appropriate for a junior-level mathematical …


Consensus Building By Committed Agents, William W. Hackborn, Tetiana Reznychenko, Yihang Zhang Feb 2019

Consensus Building By Committed Agents, William W. Hackborn, Tetiana Reznychenko, Yihang Zhang

CODEE Journal

One of the most striking features of our time is the polarization, nationally and globally, in politics and religion. How can a society achieve anything, let alone justice, when there are fundamental disagreements about what problems a society needs to address, about priorities among those problems, and no consensus on what constitutes justice itself? This paper explores a model for building social consensus in an ideologically divided community. Our model has three states: two of these represent ideological extremes while the third state designates a moderate position that blends aspects of the two extremes. Each individual in the community is …


Radial Solutions To Semipositone Dirichlet Problems, Ethan Sargent Jan 2019

Radial Solutions To Semipositone Dirichlet Problems, Ethan Sargent

HMC Senior Theses

We study a Dirichlet problem, investigating existence and uniqueness for semipositone and superlinear nonlinearities. We make use of Pohozaev identities, energy arguments, and bifurcation from a simple eigenvalue.