Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Unseen Science: Modern Discoveries Too Far Away Or Tiny For Human Eyes, Lucy Huang Dec 2017

Unseen Science: Modern Discoveries Too Far Away Or Tiny For Human Eyes, Lucy Huang

Capstones

As science has progressed, scientists have realized that evidence goes beyond the realms of physical sight. Whether it is too small or difficult to find, scientists have developed different ways to get around this problem. We see this in cancer genomics and in extrasolar planetary research. Scientists use what they know and what they measure to validate their work.

https://lucy-huang-9tge.squarespace.com/


Experiential Learning Opportunity (Elo) And Utilization Of Field-And-Data- Based Information Obtained Through The Infusion Of Technology: Highlights On Nasa Stem And Earth Science Curricula, Nazrul I. Khandaker, Matthew Khargie, Shuayb Siddiqu, Sol De Leon, Katina Singh, Newrence Wills, Krishna Mahibar Oct 2017

Experiential Learning Opportunity (Elo) And Utilization Of Field-And-Data- Based Information Obtained Through The Infusion Of Technology: Highlights On Nasa Stem And Earth Science Curricula, Nazrul I. Khandaker, Matthew Khargie, Shuayb Siddiqu, Sol De Leon, Katina Singh, Newrence Wills, Krishna Mahibar

Publications and Research

There is a greater emphasis on hands-on involvement and critical thinking skills in the geosciences and other STEM fields to inspire and engage K- 16 students to value scientific content and enable them to discover the well-documented nature of the fundamental scientific principles needed to explain various earth science and other STEM-related core phenomena. NASA MAA curricula are ideal for engaging K1-16 students in this context, since grade-specific lesson plans open-up a plethora of pedagogically sound and relevant earth science activities. These include earth’s materials and properties, meteorites, robotics, hot air balloon, flight simulation, star gazing, material science, crystal growth, …


The Formation Of Fine-Grained Chondrule Rims In Unequilibrated Ordinary Chondrites, John Bigolski Sep 2017

The Formation Of Fine-Grained Chondrule Rims In Unequilibrated Ordinary Chondrites, John Bigolski

Dissertations, Theses, and Capstone Projects

Fine-grained rims are ubiquitous, non-igneous, features that completely or partially envelope the majority of chondrules within the least equilibrated of the unequilibrated ordinary chondrites (UOCs). A detailed examination of such rims in 4 UOC samples less than petrologic type 3.2 was conducted in order to 1) characterize the relative distribution of rims within chondrite samples, 2) inspect differences between fine-grained rims and adjacent matrix material, 3) petrologically analyze the rims and their relationships with chondrule cores, 4) characterize an ungrouped UOC, Northwest Africa 5717, 5) conduct a microanalytical investigation of rim / matrix boundaries to discern relative chronologies of fine-grained …


Sobel, Dava. The Glass Universe: How The Ladies Of The Harvard Observatory Took The Measure Of The Stars. New York: Viking, 2016. 324 Pp. $30.00 Hardcover (Isbn 9780670016952)., Aldemaro Romero Jr. Jun 2017

Sobel, Dava. The Glass Universe: How The Ladies Of The Harvard Observatory Took The Measure Of The Stars. New York: Viking, 2016. 324 Pp. $30.00 Hardcover (Isbn 9780670016952)., Aldemaro Romero Jr.

Publications and Research

Women in science have been and are still facing numerous obstacles. According

to the American Association of University Professors, despite the fact that 60

percent of all doctoral students (the main pipeline for academia) in this country

are women, only 46 percent of assistant professors, 38 percent of associate

professors, and 23 percent of full professors are female. On top of that, women

faculty in colleges and universities in the United States earn on average 10 percent

less than their male counterparts.1 A number of studies have shown that women

in academia suffer from lower expectations for intelligence, so when …


Characterizing Cool Brown Dwarfs And Low-Mass Companions With Low-Resolution Near-Infrared Spectra, Paige Godfrey Jun 2017

Characterizing Cool Brown Dwarfs And Low-Mass Companions With Low-Resolution Near-Infrared Spectra, Paige Godfrey

Dissertations, Theses, and Capstone Projects

Exoplanet direct detections are reaching the temperature regime of cool brown dwarfs, motivating further understanding of the coolest substellar atmospheres. These objects, T and Y dwarfs, are numerous and isolated in the field, thus making them easier to study in detail than objects in companion systems. Brown dwarf spectral types are derived from spectral morphology and generally appear to correspond with decreasing mass and effective temperature (Teff). However, spectral subclasses of the colder objects do not share this monotonic temperature correlation, indicating that secondary parameters (gravity, metallicity, dust) significantly influence spectral morphology. These secondary atmospheric parameters can provide …


Diffuse Gamma-Ray Emission From Nearby Molecular Clouds As A Probe Of Cosmic Ray Density Variations, Ryan Abrahams Feb 2017

Diffuse Gamma-Ray Emission From Nearby Molecular Clouds As A Probe Of Cosmic Ray Density Variations, Ryan Abrahams

Dissertations, Theses, and Capstone Projects

We analyze gamma-ray emission from nearby, interstellar molecular clouds in order to calibrate current tracers of the interstellar medium and to probe local cosmic ray gradients. Gamma-rays detected by the Fermi Gamma-ray Space Telescope are created when cosmic rays collide with atomic nuclei in the interstellar medium, and thus provide a unique, unbiased view of the distribution of gas. The gamma-ray flux per proton in the interstellar medium, also known as the gamma-ray emissivity, contains information about the density of high energy cosmic rays. These cosmic rays are born in supernovae shock waves and diffuse throughout the Galaxy. The cosmic …


Disk Heating, Galactoseismology, And The Formation Of Stellar Halos, Kathryn V. Johnston, Adrian M. Price-Whelan, Maria Bergemann, Chervin F. P. Laporte, Ting S. Li, Allyson A. Sheffield, Steven R. Majewski, Rachael S. Beaton, Branimir Sesar, Sanjib Sharma Jan 2017

Disk Heating, Galactoseismology, And The Formation Of Stellar Halos, Kathryn V. Johnston, Adrian M. Price-Whelan, Maria Bergemann, Chervin F. P. Laporte, Ting S. Li, Allyson A. Sheffield, Steven R. Majewski, Rachael S. Beaton, Branimir Sesar, Sanjib Sharma

Publications and Research

Deep photometric surveys of the MilkyWay have revealed diffuse structures encircling our Galaxy far beyond the “classical” limits of the stellar disk. This paper reviews results from our own and other observational programs, which together suggest that, despite their extreme positions, the stars in these structures were formed in our Galactic disk. Mounting evidence from recent observations and simulations implies kinematic connections between several of these distinct structures. This suggests the existence of collective disk oscillations that can plausibly be traced all the way to asymmetries seen in the stellar velocity distribution around the Sun. There are multiple interesting implications …