Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Gate-Controlled Supercurrent Effect In Dry-Etched Dayem Bridges Of Non-Centrosymmetric Niobium Rhenium, Jennifer Koch, Carla Cirillo, Sebastiano Battisti, Leon Ruf, Zahra Makhdoumi Kakhaki, Alessandro Paghi, Armen Gulian, Serafim Teknowijoyo, Giorgio De Simoni, Francesco Giazotto, Carmine Attanasio, Elke Scheer, Angelo Di Bernardo Apr 2024

Gate-Controlled Supercurrent Effect In Dry-Etched Dayem Bridges Of Non-Centrosymmetric Niobium Rhenium, Jennifer Koch, Carla Cirillo, Sebastiano Battisti, Leon Ruf, Zahra Makhdoumi Kakhaki, Alessandro Paghi, Armen Gulian, Serafim Teknowijoyo, Giorgio De Simoni, Francesco Giazotto, Carmine Attanasio, Elke Scheer, Angelo Di Bernardo

Mathematics, Physics, and Computer Science Faculty Articles and Research

The application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction, named as gate-controlled supercurrent (GCS), has raised great interest for fundamental and technological reasons. To gain a deeper understanding of this effect and develop superconducting technologies based on it, the material and physical parameters crucial for the GCS effect must be identified. Top-down fabrication protocols should also be optimized to increase device scalability, although studies suggest that top-down fabricated devices are more resilient to show a GCS. Here, we investigate gated superconducting nanobridges made with a top-down fabrication process from thin films of …


Computational Modeling Of Superconductivity From The Set Of Time-Dependent Ginzburg-Landau Equations For Advancements In Theory And Applications, Iris Mowgood May 2023

Computational Modeling Of Superconductivity From The Set Of Time-Dependent Ginzburg-Landau Equations For Advancements In Theory And Applications, Iris Mowgood

Computational and Data Sciences (PhD) Dissertations

A full review of the research conducted and published during my PhD studies in Computational and Data Sciences at Chapman University, under the advisement of Dr. Armen Gulian, are presented. Using the set of time-dependent Ginzburg-Landau (TDGL) equations with inclusion of the interference current and the non-equilibrium phonon term, we modeled the dynamics of superconductors in various theory revealing states and practical purposes. A review of the history and phenomenon of superconductivity, including modern applications, is introduced. The Josephson effect and associated Josephson junction are discussed for comparison to our analogous results with the 1-D superconducting wire. The mathematics of …


High-Frequency Diode Effect In Superconducting Nb3Sn Microbridges, Sara Chahid, Serafim Teknowijoyo, Iris Mowgood, Armen Gulian Feb 2023

High-Frequency Diode Effect In Superconducting Nb3Sn Microbridges, Sara Chahid, Serafim Teknowijoyo, Iris Mowgood, Armen Gulian

Mathematics, Physics, and Computer Science Faculty Articles and Research

The superconducting diode effect has recently been reported in a variety of systems and different symmetry-breaking mechanisms have been examined. However, the frequency range of these potentially important devices still remains obscure. We investigated superconducting microbridges of Nb3Sn in out-of-plane magnetic fields; optimum magnetic fields of ∼10 mT generate ∼10% diode efficiency, while higher fields of ∼15–20 mT quench the effect. The diode changes its polarity with magnetic field reversal. We documented superconductive diode rectification at frequencies up to 100 kHz, the highest reported as of today. Interestingly, the bridge resistance during diode operation reaches a value that is a …


Prospective Solid-State Photonic Cryocooler Based On The “Phonon-Deficit Effect”, Gurgen Melkonyan, Armen Gulian Jul 2015

Prospective Solid-State Photonic Cryocooler Based On The “Phonon-Deficit Effect”, Gurgen Melkonyan, Armen Gulian

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this design microwave photons are propagating in a sapphire rod, and are being absorbed by a superconductor deposited on the surface of the rod. The frequency of the radiation is tuned to be less than the energy gap in the superconductor, so that the pair breaking is not taking place. This photon pumping redistributes the electron-hole quasiparticles: their distribution function is non-equilibrium, and the “phonon-deficit effect” takes place. There is a dielectric material deposited on top of superconductor, which serves asthe “cold finger” of the cooler. Its “acoustical density” is supposed to be smaller than that of the superconducting …


Upper Limits On A Possible Gluon Mass, Shmuel Nussinov, Robert Shrock Jan 2010

Upper Limits On A Possible Gluon Mass, Shmuel Nussinov, Robert Shrock

Mathematics, Physics, and Computer Science Faculty Articles and Research

We analyze upper limits on a possible gluon mass, mg. We first discuss various ways to modify quantum chromodynamics to include m(g) not equal 0, including a bare mass, a Higgs mechanism, and dynamical breaking of color SU(3)(c). From an examination of experimental data, we infer an upper limit m(g) < O(1) MeV. As part of our analysis, we show that a claim, hitherto unrefuted in the literature, of a much stronger upper limit on m(g), is invalid. We discuss subtleties in interpreting gluon mass limits in view of the fact that at scales below Lambda(QCD), quantum chromodynamics is strongly coupled, perturbation theory is not reliable, and the physics is not accurately described in terms of the Lagrangian degrees of freedom, including gluons. We also point out a fundamental difference in the behavior of quantum chromodynamics with a nonzero gluon mass and a weakly coupled gauge theory with a gauge boson mass.