Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

A Rotating Aperture Mask For Small Telescopes, Edward L. Foley Nov 2019

A Rotating Aperture Mask For Small Telescopes, Edward L. Foley

Master's Theses

Observing the dynamic interaction between stars and their close stellar neighbors is key to establishing the stars’ orbits, masses, and other properties. Our ability to visually discriminate nearby stars is limited by the power of our telescopes, posing a challenge to astronomers at small observatories that contribute to binary star surveys. Masks placed at the telescope aperture promise to augment the resolving power of telescopes of all sizes, but many of these masks must be manually and repetitively reoriented about the optical axis to achieve their full benefits. This paper introduces a design concept for a mask rotation mechanism that …


Brightest Cluster Galaxy Evolution Exploration: Comparing The Separation Of Cluster X-Ray Light And Visible Wavelength Galaxy Light With Spectral Data, Matthew Aaron Salinas Jul 2019

Brightest Cluster Galaxy Evolution Exploration: Comparing The Separation Of Cluster X-Ray Light And Visible Wavelength Galaxy Light With Spectral Data, Matthew Aaron Salinas

Physics

Brightest Cluster Galaxies (BCGs), the brightest galaxy in a cluster of hundreds to thousands of galaxies, are some of the biggest, brightest, and most massive galaxies in the universe. Characterizing a BCG can help discover more about galaxy evolution - the aging, changing, and possible merging (collisions) of galaxies. This project involves determining the separation of the peak of x-ray emission of the galaxy cluster, and the peak of visible emission of the BCG to characterize the system as being disturbed or undisturbed that can then lead to discoveries about its formation and evolution. We have found that 17.4% of …


Differential Photometry Of Active Galactic Nuclei Using Time Resolved Observations With The 1m Nickel Telescope Of Lick Observatory, Chance L. Spencer Jun 2019

Differential Photometry Of Active Galactic Nuclei Using Time Resolved Observations With The 1m Nickel Telescope Of Lick Observatory, Chance L. Spencer

Physics

Active galactic nuclei (AGNs) are exotic objects in the center of some galaxies with luminosities that can greatly outshine the stars of the host galaxy across the entire electromagnetic spectrum. The origin of the UV/optical light is thought to be due to accretion of material onto the supermassive black hole in their centers. Since these objects are too far away to resolve the gravitational sphere of influence of the black hole directly, we make use of a method called reverberation mapping. We measure the lag between the AGN power-law continuum emitted by the accretion disk and the Doppler-broadened emission lines …


Microcontroller Differential Gps To Subtract Signal Delay Due To Ambient Free Electrons In The Ionosphere, Diana Jane Swanson Jun 2019

Microcontroller Differential Gps To Subtract Signal Delay Due To Ambient Free Electrons In The Ionosphere, Diana Jane Swanson

Physics

The goal of this project is to create a Global Positioning System (GPS) receiver that is more precise than one GPS receiver on its own. The technique is to take the difference between a GPS receiver’s measured position and its actual position, then use radio frequency (RF) communication to send that differential value to another microcontroller GPS receiver. This differential value will be added to the measured second location to get a more accurate position for the second GPS receiver, thus creating a differential GPS.