Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Achieving Laser Wavelength Stability For Use In Neutral Atom Quantum Computing, Jennifer H. Rushing Dec 2011

Achieving Laser Wavelength Stability For Use In Neutral Atom Quantum Computing, Jennifer H. Rushing

Physics

Quantum computing may still be decades away from realization but the pieces necessary for the construction of the first quantum chip are beginning to come together. One piece still eluding researchers is the ability to address individual atoms within a scalable quantum chip structure. The resolution to this issue may be found in any one of several promising implementations, including the use of neutral atoms trapped in 2D optical lattices. One method of constructing such lattices, which has been shown to be computationally viable, employs the diffraction pattern just behind a circular aperture. Laser wavelength stability plays a crucial role …


Projection Of Diffracted Optical Atom Traps, Jeremy Kruger Sep 2011

Projection Of Diffracted Optical Atom Traps, Jeremy Kruger

Physics

Theoretical calculations were performed for the projection of a diffraction pattern created by a pinhole through a single-lens system using vector diffraction theory and a combination of programs (MathCAD, Igor, etc.). The projected diffraction patterns were then experimentally created, recorded, and analyzed. This work is part of a larger collaboration with Dr. Kat Gillen, to trap and manipulate atoms in a Magneto Optical Trap (MOT) and to make further steps in the direction of Quantum Computing using trapped neutral atoms.


Comparison Of A High Purity Germanium Gamma Ray Spectrometer And A Multidimensional Nai(T1) Scintillation Gamma Ray Spectrometer, Greg Stratton Jul 2011

Comparison Of A High Purity Germanium Gamma Ray Spectrometer And A Multidimensional Nai(T1) Scintillation Gamma Ray Spectrometer, Greg Stratton

Aerospace Engineering

This report compares two different gamma ray spectrometers in terms of performance, operation, and apparatus and also investigates the design and integration challenges of using gamma ray spectrometers in space. The first spectrometer is a one-dimensional high purity germanium (HPGe) spectrometer and the second is a multidimensional NaI(Tl) scintillation spectrometer (MGRS). The key results show that the HPGe exhibits 15 to 27 times better energy resolution than the MGRS, but the MGRS is 52 times more sensitive and removes 177 % more of the background radiation.


Quantum Mechanics, Quantum Computation, And The Density Operator In Sympy, Addison Cugini Jun 2011

Quantum Mechanics, Quantum Computation, And The Density Operator In Sympy, Addison Cugini

Physics

Because aspects of quantum mechanics are both difficult to understand and difficult algebraically, there is a need for software which symbolically simulates quantum mechanical phenomena. To accomplish this goal, code has been added to an open-source computer algebra system, called SymPy, which models the abstraction of Dirac notation and the density operator. Additionally, a quantum computer simulation has been built using this abstraction. This paper shall discuss the code that has been added as well as any relevant physics important to understanding the code. In particular, we shall focus on the density operator of statistical quantum mechanics using SymPy's density …


Symbolic Quantum Circuit Simplification In Sympy, Matthew Curry Jun 2011

Symbolic Quantum Circuit Simplification In Sympy, Matthew Curry

Physics

In the field of quantum information science, one can design a series of quantum logic operations known as a circuit. Circuits are the basis for quantum computations in quantum computing. As circuits will most likely be designed from a logical standpoint, there could exist mathematical redundancies which will lead to a larger circuit than necessary. These redundancies are computationally expensive, and there is a need for them to be found and eliminated to simplify the circuit. We present our research on finding the rules for simplifying circuits and its implementation in SymPy.


Saturated Absorption For A Magneto-Optical Atom Trap As A Step Toward Atomic Dipole Traps In A Diffraction Pattern From A Circular Aperture, Andrew Ferdinand Jun 2011

Saturated Absorption For A Magneto-Optical Atom Trap As A Step Toward Atomic Dipole Traps In A Diffraction Pattern From A Circular Aperture, Andrew Ferdinand

Physics

Neutral atom quantum computing is a promising avenue toward the realization of a physical quantum computer. The diffraction pattern formed by laser light immediately behind a circular aperture can be used as optical atomic dipole traps, and has the potential to be scaled up to create a two dimensional array of individually addressable qubit sites. In working towards experimental demonstration of the dipole traps, we are constructing a MOT. The function of the MOT is to cool and trap 87Rb in a localized cloud in our vacuum chamber, which will be used to load the dipole traps. One critical …