Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Brigham Young University

2008

EUV

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Extreme-Ultraviolet Polarimeter Utilizing Laser-Generated High-Order Harmonics, Nicole Brimhall, Matthew Turner, Nicholas Herrick, David D. Allred, R. Steven Turley, Michael Ware, Justin Peatross Oct 2008

Extreme-Ultraviolet Polarimeter Utilizing Laser-Generated High-Order Harmonics, Nicole Brimhall, Matthew Turner, Nicholas Herrick, David D. Allred, R. Steven Turley, Michael Ware, Justin Peatross

Faculty Publications

We describe an extreme-ultraviolet (EUV) polarimeter that employs laser-generated high-order harmonics as the light source. The polarimeter is designed to characterize materials and thin films for use with EUV light. Laser high harmonics are highly directional with easily rotatable linear polarization, not typically available with other EUV sources. The harmonics have good wavelength coverage, potentially spanning the entire EUV from a few to a hundred nanometers. Our instrument is configured to measure reflectances from 14 to 30 nm and has ~180 spectral resolution (lambda/delta lambda). The reflection from a sample surface can be measured over a continuous range of incident …


Nanoscale Characterization Of Thin Film Coatings Using Annular Dark Field Scanning Transmission Electron Microscopy, Guillermo Acosta, Richard Vanfleet, David D. Allred Jan 2008

Nanoscale Characterization Of Thin Film Coatings Using Annular Dark Field Scanning Transmission Electron Microscopy, Guillermo Acosta, Richard Vanfleet, David D. Allred

Faculty Publications

When considering the optical performance of thin films in the Extreme Ultraviolet (EUV), developing an accurate physical description of a thin film coating is necessary to be able to successfully model optical performance. With the short wavelengths of the EUV, film interfaces and sample roughness warrant special attention and care. The surfaces of thin film samples are routinely measured by Atomic Force Microscopy, from which roughness can be determined. However, characterizing the quality of interfaces below the surface is much more challenging. In a recent study of scandium oxide thin films, High Resolution Transmission Electron Microscopy and Annular Dark Field …