Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Brigham Young University

Astrophysics and Astronomy

Etching

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Microfabrication With Smooth, Thin Cnt/Polymer Composite Sheets, Nathan Edward Boyer Jun 2016

Microfabrication With Smooth, Thin Cnt/Polymer Composite Sheets, Nathan Edward Boyer

Student Works

Carbon nanotube (CNT)/polymer composite sheets can be extremely high strength and lightweight, which makes them attractive for fabrication of mechanical structures. This thesis demonstrates a method whereby smooth, thin CNT/polymer composite sheets can be fabricated and patterned on the microscale using a process of photolithography and plasma etching. CNT/polymer composites were made from CNTs grown using chemical vapor deposition using supported catalyst growth and floating catalyst growth. The composite sheets had a roughness of approximately 30nm and were about 61¼m or 261¼m depending on whether they were made from supported catalyst grown or floating catalyst grown CNTs. The composites were …


Microfabrication With Smooth, Thin Cnt/Polymer Composite Sheets, Nathan Edward Boyer Jun 2016

Microfabrication With Smooth, Thin Cnt/Polymer Composite Sheets, Nathan Edward Boyer

Theses and Dissertations

Carbon nanotube (CNT)/polymer composite sheets can be extremely high strength and lightweight, which makes them attractive for fabrication of mechanical structures. This thesis demonstrates a method whereby smooth, thin CNT/polymer composite sheets can be fabricated and patterned on the microscale using a process of photolithography and plasma etching. CNT/polymer composites were made from CNTs grown using chemical vapor deposition using supported catalyst growth and floating catalyst growth. The composite sheets had a roughness of approximately 30nm and were about 61¼m or 261¼m depending on whether they were made from supported catalyst grown or floating catalyst grown CNTs. The composites were …


X-Ray Diode Using A Silicon Field Emission Photocathode, W. I. Karian, Larry V. Knight, David D. Allred, A. Reyes-Mena Jan 1992

X-Ray Diode Using A Silicon Field Emission Photocathode, W. I. Karian, Larry V. Knight, David D. Allred, A. Reyes-Mena

Faculty Publications

We have produced arrays of 10,000 sharp p-type silicon points using an etch plus oxidation method. The points were used as electron emitters. No high vacuum cesiation or high temperature cleaning was needed to observe the electron emission. These are seen to be photosensitive sources of electrons at 200 K and 300 K. They were also used to produce AlKα x-rays. This constitutes the first use of etched, point arrays for generating electrons for x-ray sources.


Manufacturing Of Atomically Sharp Silicon Tips And Their Use As Photocathodes, W. I. Karian, Larry V. Knight, David D. Allred, A. Reyes-Mena Jan 1992

Manufacturing Of Atomically Sharp Silicon Tips And Their Use As Photocathodes, W. I. Karian, Larry V. Knight, David D. Allred, A. Reyes-Mena

Faculty Publications

The discovery and understanding of the photoelectric effect led to the study of photoemissive materials fall into two major categories: classical photoemitters and negative-electron-affinity (NEA) materials. Classical photoemitters usually involve an alkali metal, a group-V element such as phosphorus, silver, and/or oxygen. An example is the Ag-O-Cs (S1) photoemitter. NEA photocathodes consist of a photoconductive single crystal semiconductor covered with a thin layer of cesium and oxygen. This layer lowers the work function of the photocathode. A dipole layer is formed at the surface, and band bending occurs. This lowers the effective work function. An example is the GaAs(CsO) photocathode …


Diffuse Absorbing Beryllium Coatings Produced By Magnetron Sputtering, David D. Allred, C. M. Egert Jan 1990

Diffuse Absorbing Beryllium Coatings Produced By Magnetron Sputtering, David D. Allred, C. M. Egert

Faculty Publications

Beryllium coatings with varying thicknesses and columnar grain sizes were deposited by low temperature magnetron sputtering and wet chemically etched to enhance diffuse absorption of light. After etching these coatings exhibited a matte black surface finish and low specular reflectance (below 2%) in the IR up to a critical wavelength dependent upon the original grain size of the coating. Extremely thick coatings (350 µm) with original grain sizes of 10 to 12 µm were produced which exhibited specular reflectances below 0.5% up to 50 µm wavelength and a Lambertian BRDF at 10.6 µm averaging 4.3x10-3 ster-1. Scanning electron micrographs are …