Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Brigham Young University

Astrophysics and Astronomy

Alloys

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Prediction And Study Of Binary Alloys Using First-Principles Methods, Richard Hansen Taylor Ii Jul 2010

Prediction And Study Of Binary Alloys Using First-Principles Methods, Richard Hansen Taylor Ii

Theses and Dissertations

The utility of first-principles methods in the study and prediction of binary alloys is showcased by three detailed studies. In particular, the T = 0K cluster expansion methodology in conjunction with finite temperature statistical modeling by a Monte Carlo method is used to study two systems of practical interest, Mg-Li (magnesium-lithium) and Rh-W (rhodium-tungsten). Also, an empirically-informed, high-throughput approach to crystal structure prediction is shown by a study of the Pt$_8$Ti (the Pietrokowsky phase) phase and a broad and detailed analysis of binary Mg-X phases in 39 systems (X=Ag, Al, Au, Ca, Cd, Cu, Fe, Ga, Ge, Hf, Hg, In, …


Verifying Predictions Of The L13 Crystal Structure In Cd-Pt And Pd-Pt By Exhaustive Enumeration, Gus L. W. Hart Jul 2009

Verifying Predictions Of The L13 Crystal Structure In Cd-Pt And Pd-Pt By Exhaustive Enumeration, Gus L. W. Hart

Faculty Publications

In 2001, S. Müller and A. Zunger [Phys. Rev. Lett. 87, 165502 (2001)] predicted a never-before-observed crystal structure in Ag-Pd. Recently, Curtarolo predicted the same structure to be stable in Pt-Cd and Pt-Pd [S. Curtarolo et. Al., CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 29, 163 (2005)]. The predicted structure is unique in several ways. though never seen in any other face-centered-cubic-based intermetallic binary compound or ordered alloy, it is relatively simple—it contains only four atoms per unit cell. Furthermore, the structure is the only one of this small size, except the L12 structure, that cannot be characterized as a simple …


Using Genetic Algorithms To Map First-Principles Results To Model Hamiltonians: Application To The Generalized Ising Model For Alloys, Gus L. W. Hart, Volker Blum, Michael J. Walorski, Alex Zunger Oct 2005

Using Genetic Algorithms To Map First-Principles Results To Model Hamiltonians: Application To The Generalized Ising Model For Alloys, Gus L. W. Hart, Volker Blum, Michael J. Walorski, Alex Zunger

Faculty Publications

The cluster expansion method provides a standard framework to map first-principles generated energies for a few selected configurations of a binary alloy onto a finite set of pair and many-body interactions between the alloyed elements. These interactions describe the energetics of all possible configurations of the same alloy, which can hence be readily used to identify ground state structures and, through statistical mechanics solutions, find finite-temperature properties. In practice, the biggest challenge is to identify the types of interactions which are most important for a given alloy out of the many possibilities. We describe a genetic algorithm which automates this …


Ordering Tendencies In Octahedral Mgo-Zno Alloys, Gus L. W. Hart, Mahdi Sanati, Alex Zunger Oct 2003

Ordering Tendencies In Octahedral Mgo-Zno Alloys, Gus L. W. Hart, Mahdi Sanati, Alex Zunger

Faculty Publications

Isostrutural II-VI alloys whose components are either rocksalt stable (e.g., CaO-MgO) or zincblende stable (e.g., ZnS-ZnSe) are known to be thermodynamically unstable at low temperatures, showing a miscibility gap and no bulk ordering. In contrast, we show that heterostructural MgO-ZnO is stable, under certain conditions, in the sixfold-coordinated structure for Zn concentrations below 67%, giving rise to spontaneously ordered alloys. Using first-principles calculations, we explain the origin of this stability, the structures of their low-temperature ordered phases, short-range-order patterns, and their optical band-gap properties.


Origins Of Nonstoichiometry And Vacancy Ordering In Sc1-X□Xs, Gus L. W. Hart, Alex Zunger Dec 2001

Origins Of Nonstoichiometry And Vacancy Ordering In Sc1-X□Xs, Gus L. W. Hart, Alex Zunger

Faculty Publications

Whereas nearly all compounds AnBm obey Dalton's rule of integer stoichiometry (n:m, both integer), there is a class of systems, exemplified by the rocksalt structure Sc1-x□xS, that exhibits large deviations from stoichiometry via vacancies, even at low temperatures. By combining first-principles total energy calculations with lattice statistical mechanics, we scan an astronomical number of possible structures, identifying the stable ground states. Surprisingly, all have the same motifs: (111) planes with (112) vacancy rows arranged in (110) columns. Electronic structure calculations of the ground states (identified out of ~3 × 10^6 structures) reveal the remarkable origins of nonstoichiometry.