Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physical Sciences and Mathematics

Quantum Dot Band Gap Measurements, John Ryan Peterson Nov 2016

Quantum Dot Band Gap Measurements, John Ryan Peterson

Student Works

This presentation was given during the summer of 2016 as part of the BYU REU program funded by the NSF. Here I give a brief explanation of our quantum dot synthesis as well as explain the use of absorption spectroscopy to measure indirect band gap energies of semiconductors. Our experimental setup is shown and recent improvements are explained. We report indirect band gaps of quantum dots containing varying amounts of cobalt oxide and manganese oxide and synthesized in the protein ferritin. The data show that the band gap can be tuned arbitrarily in a certain range by varying the concentrations …


Determining The Index Of Refraction Of Aluminum Fluoride In The Ultra Violet Spectrum, Zoe Hughes Nov 2016

Determining The Index Of Refraction Of Aluminum Fluoride In The Ultra Violet Spectrum, Zoe Hughes

Student Works

A NASA project called Large UV/Optical/Infrared Surveyor (LUVOIR) is looking into ways to coat a mirror for a new space telescope. We contributed to this project by investigating aluminum fluoride (AlF3) as a possible coating for the mirror. We measured the index of refraction of AlF3 in the wavelength range 6 – 49.5 nm by testing three sample mirrors, each made up of a silicon wafer with a coating of AlF3. We took data at the Advanced Light Source (ALS) in Berkeley, California and in the laboratory at Brigham Young University (BYU). There are discrepancies …


Direct Band Gap Measurements, John Ryan Peterson Nov 2016

Direct Band Gap Measurements, John Ryan Peterson

Student Works

This presentation was given during the summer of 2016 as part of the BYU REU program funded by the NSF. Here I give a brief explanation of our quantum dot synthesis and then explain the mechanism of photoluminsecence used to measure indirect band gap energies of semiconductors. Our experimental setup is shown. Direct band gaps of lead sulfide quantum dots synthesized in ferritin are reported. The data show that the band gap can be tuned arbitrarily in a certain range by varying the concentrations of the reactants. We compare stability of quantum dots in ferritin to quantum dots synthesized without …


Energy Quantity Estimation In Radiated Acoustic Fields, Eric B. Whiting Sep 2016

Energy Quantity Estimation In Radiated Acoustic Fields, Eric B. Whiting

Theses and Dissertations

Energy quantities, which are calculated from pressure and particle velocity, yield a great deal of information about acoustic fields. Errors in pressure or particle velocity estimation lead to bias errors the estimation of energy quantities. The bias errors arise from different probe configurations and processing methods. Two processing methods are examined: the traditional method and the recently developed Phase and Amplitude Gradient Estimation (PAGE) method. These two methods are compared to investigate how each estimates pressure and particle velocity and the subsequent bias errors in a plane wave, standing wave, and spherical spreading wave field. Analytical expressions are derived for …


Increasing The Computational Efficiency Of Combinatoric Searches, Wiley Spencer Morgan Sep 2016

Increasing The Computational Efficiency Of Combinatoric Searches, Wiley Spencer Morgan

Theses and Dissertations

A new algorithm for the enumeration of derivative superstructures of a crystal is presented. The algorithm will help increase the efficiency of computational material design methods such as cluster expansion by increasing the size and diversity of the types of systems that can be modeled. Modeling potential alloys requires the exploration of all possible configurations of atoms. Additionally, modeling the thermal properties of materials requires knowledge of the possible ways of displacing the atoms. One solution to finding all symmetrically unique configurations and displacements is to generate the complete list of possible configurations and remove those that are symmetrically equivalent. …


Performance Of Phase And Amplitude Gradient Estimator Method For Calculating Energy Quantities In A Plane-Wave Tube Environment, Daxton A. Hawks Aug 2016

Performance Of Phase And Amplitude Gradient Estimator Method For Calculating Energy Quantities In A Plane-Wave Tube Environment, Daxton A. Hawks

Student Works

Acoustic intensity, energy densities, and impedance are useful quantities when considering sound fields. Calculating these energy quantities relies on measurements of acoustic pressure and particle velocity. Pressure and particle velocity can be directly measured, but direct measurements of particle velocity are difficult to make, and are normally inaccurate. A more common and effective way to find particle velocity is to estimate it using pressure measurements from two closely-spaced microphones. The traditional way of estimating particle velocity is severely limited by frequency. The PAGE method, developed at Brigham Young University, extends the frequency bandwidth at which accurate estimations can be made. …


Daxton Hawks Reu Prospectus, Daxton A. Hawks Aug 2016

Daxton Hawks Reu Prospectus, Daxton A. Hawks

Student Works

The purpose of my research is to investigate the ability of the PAGE method to improve the frequency bandwidth of calculations of energy-based quantities from multiple pressure microphones. I will accomplish this by investigating sound waves in both plane-wave and standing-wave environments. I will compare the PAGE method calculations for Ia, Ir, Ep, Ek, and Z to those of traditional and analytical expressions, based on careful ambient condition monitoring. Quantifying the bandwidth extension of the PAGE method for these energy-based quantities will lay a foundation for further application.


Preventing Oxidation Of Aluminum Films With Cadmium Of Zinc Barriers, Spencer B. Perry Aug 2016

Preventing Oxidation Of Aluminum Films With Cadmium Of Zinc Barriers, Spencer B. Perry

Student Works

The planned Large UV/Optical/Near-infrared Telescope (LUVOIR) is expected to launch sometime in the 2030s if NASA surveys recommend LUVOIR over several other projects in early developmental stages [1]. As the project title suggests, the proposed telescope would include large mirrors (between 8 and 16 meters) as part of the orbiting reflector telescope. My research focused on the preparation of aluminum mirrors with zinc or cadmium barrier layers that were designed to prevent oxidation of the aluminum.


Emission From Black Holes And Supernovae In The Early Universe, Brandon Kerry Wiggins Jul 2016

Emission From Black Holes And Supernovae In The Early Universe, Brandon Kerry Wiggins

Theses and Dissertations

To constrain the era when the first galaxies and stars appeared upcoming instruments will rely on the brightest events in the universe: supernovae and brilliant emission from massive black holes. In this dissertation, we investigate the observability of certain types of supernovae of the very first stars (Population III stars) and find that while these events are sufficiently luminous to be observed with deep-sky instruments such as the James Webb Space Telescope (JWST), they may not observe these particular types of events in their lifetimes. We next explore the origins of massive black holes and introduce the direct collapse hypothesis …


Finding The First Stars, Eli D. Mcarthur Jun 2016

Finding The First Stars, Eli D. Mcarthur

Student Works

Minor perturbations resulting from a brief period of inflation at the time of the universe's birth seeded the growth of all structure in the universe. Using Enzo, a research code optimized for running cosmological simulations, we simulate the formation of the universe. We take into account the most current cosmological parameters and plot star formation rates of the universe for halos of varying mass from the beginning of time until today. By simulating star formation of the early universe, we verify that initially minuscule dark matter pockets resulting from inflationary perturbations attract more and more matter as the universe expands. …


Microfabrication With Smooth, Thin Cnt/Polymer Composite Sheets, Nathan Edward Boyer Jun 2016

Microfabrication With Smooth, Thin Cnt/Polymer Composite Sheets, Nathan Edward Boyer

Student Works

Carbon nanotube (CNT)/polymer composite sheets can be extremely high strength and lightweight, which makes them attractive for fabrication of mechanical structures. This thesis demonstrates a method whereby smooth, thin CNT/polymer composite sheets can be fabricated and patterned on the microscale using a process of photolithography and plasma etching. CNT/polymer composites were made from CNTs grown using chemical vapor deposition using supported catalyst growth and floating catalyst growth. The composite sheets had a roughness of approximately 30nm and were about 61¼m or 261¼m depending on whether they were made from supported catalyst grown or floating catalyst grown CNTs. The composites were …


In Situ Magnetic Field Characterization With The Directional Hanle Effect, Jarom Silver Jackson Jun 2016

In Situ Magnetic Field Characterization With The Directional Hanle Effect, Jarom Silver Jackson

Theses and Dissertations

We present a novel method of in situ magnetic field mapping related to the Hanle effect. This method uses the change in spatial radiation pattern of scattered light, which we call a 'directional Hanle effect,' rather than the loss of polarization more commonly associated with the Hanle effect. It is particularly well suited for fields in a magneto-optical trap (MOT), requiring only the addition of a narrow slit and a camera to typical MOT components. The use of this method is demonstrated by measuring the gradient through, and location of, the zero-point of the field in our strontium MOT.


Microfabrication With Smooth, Thin Cnt/Polymer Composite Sheets, Nathan Edward Boyer Jun 2016

Microfabrication With Smooth, Thin Cnt/Polymer Composite Sheets, Nathan Edward Boyer

Theses and Dissertations

Carbon nanotube (CNT)/polymer composite sheets can be extremely high strength and lightweight, which makes them attractive for fabrication of mechanical structures. This thesis demonstrates a method whereby smooth, thin CNT/polymer composite sheets can be fabricated and patterned on the microscale using a process of photolithography and plasma etching. CNT/polymer composites were made from CNTs grown using chemical vapor deposition using supported catalyst growth and floating catalyst growth. The composite sheets had a roughness of approximately 30nm and were about 61¼m or 261¼m depending on whether they were made from supported catalyst grown or floating catalyst grown CNTs. The composites were …


Searching Inner Galactic Structures (Sings), Dr. Michael Joner Mar 2016

Searching Inner Galactic Structures (Sings), Dr. Michael Joner

Journal of Undergraduate Research

This Mentoring Environment Grant (MEG) proposed using the Brigham Young University West Mountain Observatory as a mentoring environment where students would experience what it is like to do research at a fully operational observatory by doing a wide variety of observations at regularly scheduled times over the course of several months during the spring and summer terms. The larger campaign (AGN STORM) headed by Dr. Bradley M. Peterson (Ohio State University) was designed to investigate different techniques used to identify structures in the core of an active galaxy and then find fundamental parameters about those structures, such as the mass …


Improvements To The Two-Point In Situ Method For Measurement Of The Room Constant And Sound Power In Semi-Reverberant Rooms, Zachary R. Jensen Mar 2016

Improvements To The Two-Point In Situ Method For Measurement Of The Room Constant And Sound Power In Semi-Reverberant Rooms, Zachary R. Jensen

Theses and Dissertations

The two-point in situ method is a technique for measuring the room constant of a semi-reverberant room and the sound power of a source in that room simultaneously using two measurement positions. Using a reference directivity source, where the directivity factor along any given axis of the source has been measured, one is able to use the Hopkins-Stryker equation to measure both the room constant and the sound power level of another source rather simply. Using both numerical and experimental data, it was found that by using generalized energy density (GED) as a measurement quantity, the results were more accurate …


Development, Evaluation, And Validation Of A High-Resolution Directivity Measurement System For Played Musical Instruments, K Joshua Bodon Mar 2016

Development, Evaluation, And Validation Of A High-Resolution Directivity Measurement System For Played Musical Instruments, K Joshua Bodon

Theses and Dissertations

A high-resolution directivity measurement system at Brigham Young University has been renovated and upgraded. Acoustical treatments have been installed on the microphone array, professional-grade audio hardware and cabling have been utilized, and user-friendly MATLAB processing and plotting codes have been developed. The directivities of 16 played musical instruments and several loudspeakers have been measured by the system, processed, and plotted. Using loudspeakers as simulated musicians, a comprehensive analysis was completed to validate the system and understand its error bounds. A comparison and evaluation of repeated-capture to single-capture spherical systems was made to demonstrate the high level of detail provided by …


Optically Detected Magnetic Resonance Of Silicon Vacancies In Sic: Predicting Resonance Of Cylindrical Cavities, Kyle Miller, John Colton Feb 2016

Optically Detected Magnetic Resonance Of Silicon Vacancies In Sic: Predicting Resonance Of Cylindrical Cavities, Kyle Miller, John Colton

Journal of Undergraduate Research

Optically Detected Magnetic Resonance is one method of performing Electron Spin Resonance (ESR) on a material. ESR is used to determine the electron spin lifetime of a material, an important parameter for use in quantum computing. Resonant cavities are conducting containers that are frequently used in ESR to create a strong magnetic field near the sample. As such it is valuable to design a resonant cavity and predict its resonant frequency. Cylindrical cavities modified with dielectric resonators (DRs) are viable for such experiments.


Exploring The Weak Mach Reflection Regime, Kevin Leete, Dr. Kent Gee Feb 2016

Exploring The Weak Mach Reflection Regime, Kevin Leete, Dr. Kent Gee

Journal of Undergraduate Research

When a shock wave reflects off a rigid surface with certain combinations of incident shock strength and angle, a Mach reflection can occur. This is when portions of the incident and reflected waves merge to create a stronger shock called a Mach stem that travels parallel to the reflecting surface. This phenomenon has been studied extensively for two extreme cases: large outdoor explosions and small, laboratory experiments of weak shocks. The purpose of this project was to design and execute an outdoor experiment where this phenomenon could be observed by microphones as well as high speed video imaging to detect …