Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

Ordered Phases In Ruthenium Binary Alloys From High-Throughput First-Principles Calculations, Gus L. W. Hart, Lance J. Nelson, Michal Jahnátek, Ohad Levy, Roman V. Chepulskii, J. Xue, Stephano Curtarolo Dec 2011

Ordered Phases In Ruthenium Binary Alloys From High-Throughput First-Principles Calculations, Gus L. W. Hart, Lance J. Nelson, Michal Jahnátek, Ohad Levy, Roman V. Chepulskii, J. Xue, Stephano Curtarolo

Faculty Publications

Despite the increasing importance of ruthenium in numerous technological applications, e.g., catalysis and electronic devices, experimental and computational data on its binary alloys are sparse. In particular, data are scant on those binary systems believed to be phase-separating. We performed a comprehensive study of ruthenium binary systems with the 28 transition metals, using high-throughput first-principles calculations. These computations predict novel unsuspected compounds in 7 of the 16 binary systems previously believed to be phase-separating and in two of the three systems reported with only a high-temperature σ phase. They also predict a few unreported compounds in five additional systems and …


Development Of A Strontium-87 Ion Interferometer, Christopher Joseph Erickson Dec 2011

Development Of A Strontium-87 Ion Interferometer, Christopher Joseph Erickson

Theses and Dissertations

I present the construction of a low-velocity intense source (LVIS) of laser-cooled neutral strontium using permanent ring magnets. The LVIS consists of a magneto-optical trap from which cold strontium is extracted in a well-collimated beam. I also present the development and implementation of a full suite of low-noise, high-bandwidth laser control electronics including a microcontroller unit. This microcontroller remotely controls and monitors the current driver, temperature controller, and PID lock circuit for each diode laser simultaneously. The current driver output is accurate to within 2 micro-amps and repeatable to with a few nano-amps. The noise spectral density of the current …


Electron Screening And Disorder-Induced Heating In Ultracold Neutral Plasmas, Mary Elizabeth Lyon Dec 2011

Electron Screening And Disorder-Induced Heating In Ultracold Neutral Plasmas, Mary Elizabeth Lyon

Theses and Dissertations

Disorder-induced heating (DIH) is a nonequilibrium, ultrafast relaxation process that occurs when laser-cooled atoms are photoionized to make an ultracold plasma. Its effects dominate the ion motion during the first 100 ns of the plasma evolution. Using tools of atomic physics we study DIH with ns time resolution for different plasma densities and temperatures. By changing the frequency of the laser beam we use to probe the ions, we map out the time evolution of the velocity distribution. We can compare this to a fluorescence simulation in order to more clearly determine the relationship between the fluorescence signal and the …


A Search For And Characterization Of Young Stellar Objects In N206, An H Ii Complex In The Large Magellanic Cloud, Tabitha Christi Buehler Dec 2011

A Search For And Characterization Of Young Stellar Objects In N206, An H Ii Complex In The Large Magellanic Cloud, Tabitha Christi Buehler

Theses and Dissertations

I have identified 51 young stellar object candidates in N206, an H II complex in the nearby Large Magellanic Cloud galaxy. Using archival images from the Spitzer Space Telescope, supplemented with other infrared and optical images, I located point sources in this region. I distinguished possible young stellar objects based on their spectral energy distributions, morphologies, and locations in color-magnitude space. I classified the young stellar object candidates based on their likelihood of being young stellar objects and based on their apparent evolutionary stages. The spatial distribution of these candidates in N206 indicates that star formation is being triggered …


Fabrication And Application Of Vertically Aligned Carbon Nanotube Templated Silicon Nanomaterials, Jun Song Oct 2011

Fabrication And Application Of Vertically Aligned Carbon Nanotube Templated Silicon Nanomaterials, Jun Song

Theses and Dissertations

A process, called carbon nanotube templated microfabrication (CNT-M) makes high aspect ratio microstructures out of a wide variety of materials by growing patterned vertically aligned carbon nanotubes (VACNTs) as a framework and then infiltrating various materials into the frameworks by chemical vapor deposition (CVD). By using the CNT-M procedure, a partial Si infiltration of carbon nanotube frameworks results in porous three dimensional microscale shapes consisting of silicon-carbon nanotube composites. The addition of thin silicon shells to the vertically aligned CNTs (VACNTs) enables the fabrication of robust silicon nanostructures with edibility to design a wide range of geometries. Nanoscale dimensions are …


Guiding The Experimental Discovery Of Magnesium Alloys, Richard H. Taylor, Gus L. W. Hart, Stefano Curtarolo Aug 2011

Guiding The Experimental Discovery Of Magnesium Alloys, Richard H. Taylor, Gus L. W. Hart, Stefano Curtarolo

Faculty Publications

Magnesium alloys are among the lightest structural materials known and are of considerable technological interest. To develop superior magnesium alloys, experimentalists must have a thorough understanding of the concentration-dependent precipitates that form in a given system, and hence, the thermodynamic stability of crystal phases must be determined. This information is often lacking but can be supplied by first-principles methods. Within the high-throughput framework, AFLOW, T = 0 K ground-state predictions are made by scanning a large set of known candidate structures for thermodynamic (formation energy) minima. The following 34 systems are investigated: AlMg, AuMg, CaMg, CdMg, CuMg, FeMg , GeMg, …


On The Measurement Of Angular Dependent Sound Transmission Through Airborne Supercritical Plates, Matthew D. Shaw Aug 2011

On The Measurement Of Angular Dependent Sound Transmission Through Airborne Supercritical Plates, Matthew D. Shaw

Theses and Dissertations

A method of measuring angular dependence of acoustic transmission through supercritical plates in air is discussed. The coincidence effect occurs in a supercritical plate when the component of the acoustic wave number parallel to the plate matches the bending wave number in the plate. The transmission of sound is a maximum at the angle where this trace wave number matching occurs. The theory of the coincidence effect is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite plates are known to diverge from theory, especially near grazing angles. An experimental setup has been developed in order …


Scaling Carbon Nanotube Localization By Floating Potential Dielectrophoresis: An Enabling Geometry, Brian S. Davis Aug 2011

Scaling Carbon Nanotube Localization By Floating Potential Dielectrophoresis: An Enabling Geometry, Brian S. Davis

Theses and Dissertations

Dielectrophoresis has been used as a technique for the parallel localization and alignment of both semiconducting and metallic carbon nanotubes (CNTs) at junctions between electrodes. A variation of this technique known as Floating Potential Dielectrophoresis (FPD) allows for a self-limiting number of CNTs to be localized at each junction, on a massively parallel scale. However, the smallest FPD geometries to date are restricted to conductive substrates and have a lower limit on floating electrode size. We present a geometry which eliminates this lower limit and enables FPD to be performed on non-conducting substrates. We also discuss experiments clarifying the self-limiting …


Photoemission By Large Electron Wave Packets Emitted Out The Side Of A Relativistic Laser Focus, Eric Flint Cunningham Jul 2011

Photoemission By Large Electron Wave Packets Emitted Out The Side Of A Relativistic Laser Focus, Eric Flint Cunningham

Theses and Dissertations

There are at least two common models for calculating the photoemission of accelerated electrons. The 'extended-charge-distribution' method uses the quantum probability current (multiplied by the electron charge) as a source current for Maxwell's equations. The 'point-like-emitter' method treats the electron like a point particle instead of like a diffuse body of charge. Our goal is to differentiate between these two viewpoints empirically. To do this, we consider a large electron wave packet in a high-intensity laser field, in which case the two viewpoints predict measurable photoemission rates that differ by orders of magnitude. Under the treatment of the 'extended-charge-distribution' model, …


Photoemission From A Laser-Driven Electron Wave Packet, John Purvis Corson Jun 2011

Photoemission From A Laser-Driven Electron Wave Packet, John Purvis Corson

Theses and Dissertations

We use quantum electrodynamics (QED) to investigate the possibility of radiative interference from a single laser-driven electron wave packet. Intuition gleaned from classical electrodynamics suggests that radiation from a large electron wave packet might interfere destructively when different regions of the packet oscillate out of phase with each other. We show that when the incident light is represented with a multi-mode coherent state, the relative phases of the electron's constituent momenta have no influence of the amount of scattered light. Hence, the radiation does not depend on the amount of free-particle spreading experienced by the electron before the interaction. This …


Polymer Molded Templates For Nanostructured Amorphous Silicon Photovoltaics, Lei Pei, Amy Balls, Cary Tippets, Jonathan Abbott, Matthew R. Linford, David D. Allred, Richard R. Vanfleet, Robert C. Davis, Jian Hu, Arun Madan Apr 2011

Polymer Molded Templates For Nanostructured Amorphous Silicon Photovoltaics, Lei Pei, Amy Balls, Cary Tippets, Jonathan Abbott, Matthew R. Linford, David D. Allred, Richard R. Vanfleet, Robert C. Davis, Jian Hu, Arun Madan

Faculty Publications

Here, the authors report the fabrication of transparent polymer templates for nanostructured amorphous silicon photovoltaics using low-cost nanoimprint lithography of polydimethylsiloxane. The template contains a square two-dimensional array of high-aspect-ratio nanoholes (300 nm diameter by 1 µm deep holes) on a 500X500 nm^2 pitch. A 100 nm thick layer of a-Si:H was deposited on the template surface resulting in a periodically nanostructured film. The optical characterization of the nanopatterned film showed lower light transmission at 600-850 nm wavelengths and lower light reflection at 400-650 nm wavelengths, resulting in 20% higher optical absorbance at AM 1.5 spectral irradiance versus a nonpatterned …


Impact Of A Finite-Temperature Equation Of State On Neutron Stars, Christian D. Draper Mar 2011

Impact Of A Finite-Temperature Equation Of State On Neutron Stars, Christian D. Draper

Theses and Dissertations

In this research, we study how a finite-temperature nuclear equation of state suitable for astrophysical simulations impacts the oscillation modes of neutron stars. We chose the Shen equation of state (EOS) because it accurately describes both stable and unstable nuclei as well as nuclear incompressibilities. I modified the existing MHD code at BYU, the HAD code, to call a lookup table for the Shen EOS for use at run time, and added a Newton-Raphson method algorithm to convert conserved variables to primitive variables. The algorithm was tested and verified by evolving a stable neutron star for several dynamical times and …


High-Quality Broadband Bvri Photometry Of Benchmark Open Clusters, Michael Deloss Joner Mar 2011

High-Quality Broadband Bvri Photometry Of Benchmark Open Clusters, Michael Deloss Joner

Theses and Dissertations

Photometric techniques are often used to observe stars and it can be demonstrated that fundamental stellar properties can be observationally determined using calibrated sets of photometric data. Many of the most powerful techniques utilized to calibrate stellar photometry employ the use of stars in clusters since the individual stars are believed to have many common properties such as age, composition, and approximate distance. Broadband photometric Johnson/Cousins BVRI observations are presented for several nearby open clusters. The new photometry has been tested for consistency relative to archival work and shown to be both accurate and precise. The careful use of a …


Time-Series Observations Of The High Mass X-Ray Binary 4u 2206+54 To Monitor Light Variation, Jessica Lynn Bugno Mar 2011

Time-Series Observations Of The High Mass X-Ray Binary 4u 2206+54 To Monitor Light Variation, Jessica Lynn Bugno

Theses and Dissertations

The high mass X-ray binary 4U 2206+54 has been a very controversial system due to variability in spectral data as well as photometric data. We, at Brigham Young University, have been observing this system in multiple filters with several telescopes. This thesis presents our methods of observations, reductions, and results. It also compares what we have been detecting to other groups looking at the same target in different wavelengths. Furthermore, this thesis discusses some of the peculiarities of 4U 2206+54 and possible theories to explain these phenomena. Based on our photometric observations for the past three years, we believe the …