Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Identifying Binary Brown Dwarf Systems Using Model Point Spread Functions, Kyle Matt, Denise Stephens Jun 2017

Identifying Binary Brown Dwarf Systems Using Model Point Spread Functions, Kyle Matt, Denise Stephens

Journal of Undergraduate Research

The purpose of this project was to improve upon a method for discovering binary brown dwarf systems, and create a program to speed up the implementation of that method. A Brown Dwarf (BD) is a celestial object that is not massive enough to undergo hydrogen fusion in its core, meaning it is too small to be a star, but is also too big to be a planet. BDs can form in low-mass binary pairs. A stellar object located many parsecs away will act as a point source of light for an observer on Earth, therefore the light from such an …


Machine Learning With Scattering Transforms, Jacob Hansen, Gus Hart Jun 2017

Machine Learning With Scattering Transforms, Jacob Hansen, Gus Hart

Journal of Undergraduate Research

Our goal was to implement scattering transforms as a mathematical representation of materials. The intention of this project was to build intuition on this technique using model data in one and two dimensions. The tools created here will be used as templates in further projects on real materials data. The intuition built during this project is crucial to the machine learning framework for materials design that we hope to build in the near future.


A Photometric Approach To The Redshift Of Galaxies, John Bohman, Joseph Moody Jun 2017

A Photometric Approach To The Redshift Of Galaxies, John Bohman, Joseph Moody

Journal of Undergraduate Research

It is necessary to study the distribution of matter to better understand the universe. There are many difficulties associated with this task however, one of the most basic being that that the universe is an extremely large space, and it takes a lot of time and effort to observe faint objects. Multi fiber spectrometers have made this task much easier, and over 1.4 million spectroscopic redshifts have been obtained. While this is certainly impressive, much remains to be done. This project attempts to develop a survey method capable of detecting and finding the redshift of relatively close (meaning a redshift …


Searching Inner Galactic Structures (Sings), Dr. Michael Joner Mar 2016

Searching Inner Galactic Structures (Sings), Dr. Michael Joner

Journal of Undergraduate Research

This Mentoring Environment Grant (MEG) proposed using the Brigham Young University West Mountain Observatory as a mentoring environment where students would experience what it is like to do research at a fully operational observatory by doing a wide variety of observations at regularly scheduled times over the course of several months during the spring and summer terms. The larger campaign (AGN STORM) headed by Dr. Bradley M. Peterson (Ohio State University) was designed to investigate different techniques used to identify structures in the core of an active galaxy and then find fundamental parameters about those structures, such as the mass …


Optically Detected Magnetic Resonance Of Silicon Vacancies In Sic: Predicting Resonance Of Cylindrical Cavities, Kyle Miller, John Colton Feb 2016

Optically Detected Magnetic Resonance Of Silicon Vacancies In Sic: Predicting Resonance Of Cylindrical Cavities, Kyle Miller, John Colton

Journal of Undergraduate Research

Optically Detected Magnetic Resonance is one method of performing Electron Spin Resonance (ESR) on a material. ESR is used to determine the electron spin lifetime of a material, an important parameter for use in quantum computing. Resonant cavities are conducting containers that are frequently used in ESR to create a strong magnetic field near the sample. As such it is valuable to design a resonant cavity and predict its resonant frequency. Cylindrical cavities modified with dielectric resonators (DRs) are viable for such experiments.


Exploring The Weak Mach Reflection Regime, Kevin Leete, Dr. Kent Gee Feb 2016

Exploring The Weak Mach Reflection Regime, Kevin Leete, Dr. Kent Gee

Journal of Undergraduate Research

When a shock wave reflects off a rigid surface with certain combinations of incident shock strength and angle, a Mach reflection can occur. This is when portions of the incident and reflected waves merge to create a stronger shock called a Mach stem that travels parallel to the reflecting surface. This phenomenon has been studied extensively for two extreme cases: large outdoor explosions and small, laboratory experiments of weak shocks. The purpose of this project was to design and execute an outdoor experiment where this phenomenon could be observed by microphones as well as high speed video imaging to detect …