Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Liquid Crystal On Silicon Non-Mechanical Steering Of A Laser Vibrometer System, Kevin S. Kuciapinski Sep 2005

Liquid Crystal On Silicon Non-Mechanical Steering Of A Laser Vibrometer System, Kevin S. Kuciapinski

Theses and Dissertations

This research examined the possibility of using a non-mechanical beam steering device to steer the beam of a coherent laser radar system. Non-mechanical beam steering devices offer many advantages in size, weight, power requirements, and steering speeds. Additionally, non-mechanical beam steering devices present the capabilities of splitting a single beam into multiple beams as well as beam forming and expanding. The coherent laser radar system used was a Laser Vibrometer System. The beam of the laser vibrometer was steered from 0 mrad to 3 mrad at 1 mrad increments using the liquid crystal on silicon (LCOS) device. The laser vibrometer …


Deconvolution Analysis Of Laser Pulse Profiles From 3-D Ladar Temporal Returns, Michael D. Walter Mar 2005

Deconvolution Analysis Of Laser Pulse Profiles From 3-D Ladar Temporal Returns, Michael D. Walter

Theses and Dissertations

Three-dimensional laser imaging systems offer important advantages for battlefield applications, such as night-time targeting and tactical reconnaissance. Recently developed technologies used by coherent detection systems that collect temporally resolved images include arrays of Avalanche Photo-Diodes (APD), Geiger mode APDs, and photo-diodes. Frequently, LADAR systems produce waveforms from each detector that characterize the convolution of the transmitted laser pulse with the target surface. The pulse convolution generates uncertainty as to the precise location of a target surface, which can severely impact various weapon systems' targeting capability. This work analyzes two deconvolution techniques: Wiener filtering and an iterative process derived from the …