Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 131

Full-Text Articles in Physical Sciences and Mathematics

Editorial: Observations And Simulations Of Layering Phenomena In The Middle/Upper Atmosphere And Ionosphere, Bingkun Yu, Xuguang Cai, Daniel J. Emmons Ii, Chong Wang And Jianfei Wu Jan 2024

Editorial: Observations And Simulations Of Layering Phenomena In The Middle/Upper Atmosphere And Ionosphere, Bingkun Yu, Xuguang Cai, Daniel J. Emmons Ii, Chong Wang And Jianfei Wu

Faculty Publications

The middle/upper atmosphere and ionosphere are the transition between neutral and ionized components of the Earth’s atmosphere, including stratosphere, mesosphere, thermosphere, ionospheric E region and ionospheric F region (Laštovička et al., 2006; Xu, et al., 2007; Smith, 2012). The atmospheric thermal structure and composition are significantly affected by dynamical processes through coupling. The layering phenomena such as mesospheric metal layers, sporadic E layers, and noctilucent clouds are important tracers to study mechanisms of the vertical coupling from the lower to the upper atmosphere (Dou et al., 2010; Plane, 2012; Xue et al., 2013).


Optimal Estimation Inversion Of Ionospheric Electron Density From Gnss-Pod Limb Measurements: Part I-Algorithm And Morphology, Dong L. Wu, Nimalan Swarnalingam, Cornelius Csar Jude H. Salina, Daniel J. Emmons, Tyler C. Summers, Robert Gardiner-Garden Jun 2023

Optimal Estimation Inversion Of Ionospheric Electron Density From Gnss-Pod Limb Measurements: Part I-Algorithm And Morphology, Dong L. Wu, Nimalan Swarnalingam, Cornelius Csar Jude H. Salina, Daniel J. Emmons, Tyler C. Summers, Robert Gardiner-Garden

Faculty Publications

GNSS-LEO radio links from Precise Orbital Determination (POD) and Radio Occultation (RO) antennas have been used increasingly in characterizing the global 3D distribution and variability of ionospheric electron density (Ne). In this study, we developed an optimal estimation (OE) method to retrieve Ne profiles from the slant total electron content (hTEC) measurements acquired by the GNSS-POD links at negative elevation angles (ε < 0°). Although both OE and onion-peeling (OP) methods use the Abel weighting function in the Ne inversion, they are significantly different in terms of performance in the lower ionosphere. The new OE results can overcome the large Ne oscillations, sometimes negative values, seen in the OP retrievals in the E-region ionosphere. In the companion paper in this Special Issue, the HmF2 and NmF2 from the OE retrieval are validated against ground-based ionosondes and radar observations, showing generally good agreements in NmF2 from all sites. Nighttime hmF2 measurements tend to agree better than the daytime when the ionosonde heights tend to be slightly lower. The OE algorithm has been applied to all GNSS-POD data acquired from the COSMIC-1 (2006–2019), COSMIC-2 (2019–present), and Spire (2019–present) constellations, showing a consistent ionospheric Ne morphology. The unprecedented spatiotemporal sampling of the ionosphere from these constellations now allows a detailed analysis of the frequency–wavenumber spectra for the Ne variability at different heights. In the lower ionosphere (~150 km), we found significant spectral power in DE1, DW6, DW4, SW5, and SE4 wave components, in addition to well-known DW1, SW2, and DE3 waves. In the upper ionosphere (~450 km), additional wave components are still present, including DE4, DW4, DW6, SE4, and SW4. The co-existence of eastward- and westward-propagating wave4 components implies the presence of a stationary wave4 (SPW4), as suggested by other earlier studies. Further improvements to the OE method are proposed, including a tomographic inversion technique that leverages the asymmetric sampling about the tangent point associated with GNSS-LEO links.


The Behavior Of Partially Coherent Twisted Space-Time Beams In Atmospheric Turbulence, Milo W. Hyde Iv Jan 2023

The Behavior Of Partially Coherent Twisted Space-Time Beams In Atmospheric Turbulence, Milo W. Hyde Iv

Faculty Publications

We study how atmospheric turbulence affects twisted space-time beams, which are non-stationary random optical fields whose space and time dimensions are coupled with a stochastic twist. Applying the extended Huygens–Fresnel principle, we derive the mutual coherence function of a twisted space-time beam after propagating a distance z through atmospheric turbulence of arbitrary strength. We specialize the result to derive the ensemble-averaged irradiance and discuss how turbulence affects the beam’s spatial size, pulse width, and space-time twist. Lastly, we generate, in simulation, twisted space-time beam field realizations and propagate them through atmospheric phase screens to validate our analysis.


A Statistical Analysis Of Sporadic-E Characteristics Associated With Gnss Radio Occultation Phase And Amplitude Scintillations, Daniel J. Emmons, Dong L. Wu, Nimalan Swarnalingam Dec 2022

A Statistical Analysis Of Sporadic-E Characteristics Associated With Gnss Radio Occultation Phase And Amplitude Scintillations, Daniel J. Emmons, Dong L. Wu, Nimalan Swarnalingam

Faculty Publications

Statistical GNSS-RO measurements of phase and amplitude scintillation are analyzed at the mid-latitudes in the local summer for a 100 km altitude. These conditions are known to contain frequent sporadic-E, and the S4-σϕ trends provide insight into the statistical distributions of the sporadic-E parameters. Joint two-dimensional S4-σϕ histograms are presented, showing roughly linear trends until the S4 saturates near 0.8. To interpret the measurements and understand the sporadic-E contributions, 10,000 simulations of RO signals perturbed by sporadic-E layers are performed using length, intensity, and vertical thickness distributions from previous studies, with the assumption that the sporadic-E layer acts …


Long-Distance Propagation Of 162 Mhz Shipping Information Links Associated With Sporadic E, Alex T. Chartier, Thomas R. Hanley, Daniel J. Emmons Nov 2022

Long-Distance Propagation Of 162 Mhz Shipping Information Links Associated With Sporadic E, Alex T. Chartier, Thomas R. Hanley, Daniel J. Emmons

Faculty Publications

This is a study of anomalous long-distance (>1000 km) radio propagation that was identified in United States Coast Guard monitors of automatic identification system (AIS) shipping transmissions at 162 MHz. Our results indicate this long-distance propagation is caused by dense sporadic E layers in the daytime ionosphere, which were observed by nearby ionosondes at the same time. This finding is surprising because it indicates these sporadic E layers may be far more dense than previously thought.


Improving On Atmospheric Turbulence Profiles Derived From Dual Beacon Hartmann Turbulence Sensor Measurements, Alexander S. Boeckenstedt, Jack E. Mccrae, Santasri Bose-Pillai, Benjamin Wilson Jun 2022

Improving On Atmospheric Turbulence Profiles Derived From Dual Beacon Hartmann Turbulence Sensor Measurements, Alexander S. Boeckenstedt, Jack E. Mccrae, Santasri Bose-Pillai, Benjamin Wilson

Faculty Publications

Atmospheric turbulence is an inevitable source of wavefront distortion in all fields of long range laser propagation and sensing. However, the distorting effects of turbulence can be corrected using wavefront sensors contained in adaptive optics systems. Such systems also provide deeper insight into surface layer turbulence, which is not well understood. A unique method of profile generation by a dual source Hartmann Turbulence Sensor (HTS) technique is introduced here. Measurements of optical turbulence along a horizontal path were taken to create C2n profiles. Two helium-neon laser beams were directed over an inhomogeneous horizontal path and captured by the HTS. The …


Global Gnss-Ro Electron Density In The Lower Ionosphere, Dong L. Wu, Daniel J. Emmons Ii, Nimalan Swarnalingam Mar 2022

Global Gnss-Ro Electron Density In The Lower Ionosphere, Dong L. Wu, Daniel J. Emmons Ii, Nimalan Swarnalingam

Faculty Publications

Lack of instrument sensitivity to low electron density (Ne) concentration makes it difficult to measure sharp Ne vertical gradients (four orders of magnitude over 30 km) in the D/E-region. A robust algorithm is developed to retrieve global D/E-region Ne from the high-rate GNSS radio occultation (RO) data, to improve spatiotemporal coverage using recent SmallSat/CubeSat constellations. The new algorithm removes F-region contributions in the RO excess phase profile by fitting a linear function to the data below the D-region. The new GNSS-RO observations reveal many interesting features in the diurnal, seasonal, solar-cycle, and magnetic-field-dependent variations in the …


Intercomparison Of Four Microphysics Schemes In Simulating Persistent Arctic Mixed-Phase Stratocumulus Clouds, Zachary A. Cleveland Mar 2022

Intercomparison Of Four Microphysics Schemes In Simulating Persistent Arctic Mixed-Phase Stratocumulus Clouds, Zachary A. Cleveland

Theses and Dissertations

Persistent Arctic mixed-phase stratocumulus clouds (AMPS) are important to the surface radiation budget of the Arctic. Their presence produces warming within the boundary layer and at the surface and inaccurately forecasting AMPS can lead to large, erroneous temperature forecasts. A Large Eddy Simulation of a case study of a persistent AMPS cloud was conducted using the Advanced Research Weather Research and Forecasting (WRF-ARW) model. The case examined occurred near Oliktok Point, AK between 26 and 27 April, 2017. The produced cloud pattern and properties of four different microphysics schemes -- P3, Thompson, Morrison, and WSM6 -- are compared to observations. …


Global Sporadic-E Climatological Analysis Using Gps Radio Occultation And Ionosonde Data, Travis J. Hodos Mar 2022

Global Sporadic-E Climatological Analysis Using Gps Radio Occultation And Ionosonde Data, Travis J. Hodos

Theses and Dissertations

A climatology of sporadic-E (Es) derived from a combined data set of GPS radio occultation (GPS-RO) and ground-based ionosonde soundings is presented for the period from September 2006 to February 2019. The ionosonde soundings were measured using the Lowell Digisonde International (LDI) Global Ionosphere Radio Observatory (GIRO) network consisting of 65 sites and 13,141,060 total soundings. The GPS-RO observations were taken aboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites and processed using two binary Es detection algorithms, totaling 9,072,922 occultations. The first algorithm is an S4 amplitude threshold calibrated to the occurrence of any blanketing Es …


Feasibility Of Fireball Trail Detection Using Ground-Based Gps Receivers, Ian R. Moffett Mar 2022

Feasibility Of Fireball Trail Detection Using Ground-Based Gps Receivers, Ian R. Moffett

Theses and Dissertations

The feasibility of using GPS data to detect fireballs is analyzed by first modeling the fireball’s trail diffusion and plasma chemistry to get a resulting ion density profile of the trail over time. The signal perturbation caused by the fireball trail is simulated for a ground receiver using an analytic solution for diffraction from a Gaussian lens. Five cases were modeled with varying initial peak ion densities and altitudes taken from fireball and reentry vehicle data. This paper shows that it is feasible to detect a fireball trail using GPS if the fireball has a sufficiently high initial ion density, …


A Comparison Of Sporadic-E Occurrence Rates Using Gps Radio Occultation And Ionosonde Measurements, Rodney Carmona, Omar A. Nava, Eugene V. Dao, Daniel J. Emmons Jan 2022

A Comparison Of Sporadic-E Occurrence Rates Using Gps Radio Occultation And Ionosonde Measurements, Rodney Carmona, Omar A. Nava, Eugene V. Dao, Daniel J. Emmons

Faculty Publications

Sporadic-E (Es) occurrence rates from Global Position Satellite radio occultation (GPS-RO) measurements have shown to vary by a factor of five between studies, motivating the need for a comparison with ground-based measurements. In an attempt to find accurate GPS-RO techniques for detecting Es formation, occurrence rates derived using five previously developed GPS-RO techniques are compared to ionosonde measurements over an eight-year period from 2010–2017. GPS-RO measurements within 170 km of a ionosonde site are used to calculate Es occurrence rates and compared to the ground-truth ionosonde measurements. The techniques are compared individually for each ionosonde site …


Comparison Of Seasonal Foes And Fbes Occurrence Rates Derived From Global Digisonde Measurements, Dawn K. Merriman, Omar A. Nava, Eugene V. Dao, Daniel J. Emmons Ii Dec 2021

Comparison Of Seasonal Foes And Fbes Occurrence Rates Derived From Global Digisonde Measurements, Dawn K. Merriman, Omar A. Nava, Eugene V. Dao, Daniel J. Emmons Ii

Faculty Publications

A global climatology of sporadic-E occurrence rates (ORs) based on ionosonde measurements is presented for the peak blanketing frequency, fbEs, and the ordinary mode peak frequency of the layer, foEs. ORs are calculated for a variety of sporadic-E frequency thresholds: no lower limit, 3, 5, and 7 MHz. Seasonal rates are calculated from 64 Digisonde sites during the period 2006–2020 using ionograms either manually or automatically scaled with ARTIST-5. Both foEs and fbEs ORs peak in the Northern Hemisphere during the boreal summer, with a decrease by roughly a factor of 2–3 in fbEs rates relative to foEs rates without …


Ionospheric F-Layer Dipole Flute Instability Effects On Electromagnetic Scattering In A Magnetohydrodynamic Plasma, Andrew J. Knisely Nov 2021

Ionospheric F-Layer Dipole Flute Instability Effects On Electromagnetic Scattering In A Magnetohydrodynamic Plasma, Andrew J. Knisely

Theses and Dissertations

The ionosphere has significant impact on radio frequency (RF) applications such as satellites, over-the-horizon radar, and commercial communication systems. The dynamic processes effecting the behavior of the ionic content leads to a variety of instabilities that adversely affect the quality of RF signals. In the F-layer ionosphere, flute instability persists, appearing as two radial regions of high and low density perturbations elongated along the earth's geomagnetic field lines. The sizes of flute structures are comparable to the wavelengths in the high frequency spectrum. The objective is to characterize the high frequency scattering of an incident field by developing a 3D …


Relationship Between Solar Energetic Particle He/H Abundance Ratios And Properties Of Flares And Cmes, Christopher R. Davidson Sep 2021

Relationship Between Solar Energetic Particle He/H Abundance Ratios And Properties Of Flares And Cmes, Christopher R. Davidson

Theses and Dissertations

Previous studies have investigated the He/H elemental abundance ratios of Solar Energetic Particle (SEP) Events of energies above 4 MeV. Also, studies have investigated the correlations between SEPs, Coronal Mass Ejections (CME), and Solar Flares. This work finds the correlations between the >4 MeV He/H abundance ratios and the solar parameters from the SEP, CME, and solar flare associated with the abundance increases. 43 SEP events located at solar west longitude are analyzed to find the correlation coefficients. Highly significant correlation was found between the He/H abundance ratios and the following parameters: solar flare flux, solar flare fluence, CME linear …


Profiling Atmospheric Turbulence Using A Dynamically Ranged Rayleigh Beacon System, Steven M. Zuraski Sep 2021

Profiling Atmospheric Turbulence Using A Dynamically Ranged Rayleigh Beacon System, Steven M. Zuraski

Theses and Dissertations

The effect of turbulence on a long range imaging system manifest as an image blur effect usually quantified by the phase distortions present in a system. The blurring effect is conceivably understood on the basis of measured strength of atmospheric turbulence profiled within the propagation volume. One method for obtaining a turbulence strength profile is by use of a dynamically ranged Rayleigh beacon system that exploits strategically varied beacon ranges along the propagation path, effectively deducing estimates of specific path segment contributions of the blurring aberrations affecting an optical imaging system. A system utilizing this technique has been designed, and …


Development And Verification Of Extreme Space Weather Phenomena Models, Sophia G. Schwalbe Sep 2021

Development And Verification Of Extreme Space Weather Phenomena Models, Sophia G. Schwalbe

Theses and Dissertations

A range of 14 M-class flares from 1 June 2015 to 27 September 2016 were analyzed to find significant trends in electron frequency profile modeling using the GLobal airglOW (GLOW) model and radar parameters using a ray tracing algorithm developed by the Air Force Research Laboratory. GLOW was run for all the flares using three different solar spectrum schemes and an average of the three: the Hinteregger method, EUV flux model for aeronomic calculations (EUVAC), and a rebinned Flare Irradiance Spectrum Model (FISM) result. Comparing data for the E-layer where GLOW is most accurate, it was determined that GLOW using …


Impact Of Hurricane Michael (2018) On Local Vertical Total Electron Content, Joanna E.S. Williams, Robert C. Tournay, H. Rose Tseng, Daniel J. Emmons Ii, Omar A. Nava Apr 2021

Impact Of Hurricane Michael (2018) On Local Vertical Total Electron Content, Joanna E.S. Williams, Robert C. Tournay, H. Rose Tseng, Daniel J. Emmons Ii, Omar A. Nava

Faculty Publications

An analysis of vertical total electron content (TEC) estimates from the MIT Madrigal database is performed for the regions surrounding the eye of Hurricane Michael (2018). Absolute and detrended TEC values show a noticeable increase during the tropical cyclone (TC) relative to fluctuations at the same locations prior to the storm. Direct comparisons of TEC perturbation magnitudes to the number of lightning flashes in latitude-longitude boxes surrounding the eye of Hurricane Michael for each 5 min period of 10 October 2018 showed no visible trends. A similar comparison of the vertical TEC fluctuations with respect to the rainfall rates showed …


Identifying Four Year Average Cloud Field Regimes From World Wide Merged Cloud Analysis Dataset By Way Of K-Means Clustering, Stewart G. Almeida Mar 2021

Identifying Four Year Average Cloud Field Regimes From World Wide Merged Cloud Analysis Dataset By Way Of K-Means Clustering, Stewart G. Almeida

Theses and Dissertations

Joint histograms of cloud top height (CTH) and optical depth (OD) are created using the World-Wide Merged Cloud Analysis (WWMCA) dataset over a four year period (2014-2017) to identify average cloud field regimes and assess the application of utilizing the WWMCA dataset with the AFIT Sensor and Scene Emulation Tool (ASSET). Two selected regions encompassing the Florida peninsula and a portion of the Pacific Ocean off the west-central coast of South America are examined over the months of January and July. Cloud field regimes are identified by running generated hourly OD-CTH histograms through k-means clustering, with optimal cluster number ( …


Synthetic Lightning Generation Employing Autoregressive-Moving-Average (Arma) Models, Seth R. Powers Mar 2021

Synthetic Lightning Generation Employing Autoregressive-Moving-Average (Arma) Models, Seth R. Powers

Theses and Dissertations

This work explores the question as to whether lightning data can be generated synthetically using vector autoregressive-moving-average (VARMA) models. Geostationary Lightning Mapper (GLM) data is used as the basis for the study. Lightning climatology is examined and compared to previous research to gain insight into the targeted areas. Individual lightning ashes are analyzed to inspect how well the process works on a smaller scale. Then, entire regions are evaluated to simulate lightning creation in a larger setting. Results suggest that the VARMA process employed is sufficient in generating synthetic lightning observations, largely dependent on the time and location of lightning …


Comparison Of Spatial Precipitation Forecasts With A Satellite Dataset, Andrew C. Siebels Mar 2021

Comparison Of Spatial Precipitation Forecasts With A Satellite Dataset, Andrew C. Siebels

Theses and Dissertations

The purpose of this research is to analyze and compare global precipitation data from the Climate Forecast System Version 2 (CFSv2) with the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)-Climate Data Record (CDR) to improve long term precipitation forecasting. The CFSv2 has a 0.5-degree resolution which will provide model data for precipitation forecasts. The PERSIANN-CDR is a satellite derived daily 0.25-degree dataset with 37 years of global precipitation coverage 60 N to 60 S. The 0-to-10, 15-to-25, 55-to-65, and 80-to-90 day forecast time frames will then be analyzed for accuracy, and a quantile mapping (QM) technique …


Arctic Observations And Numerical Simulations Of Surface Wind Effects On Multi-Angle Snowflake Camera Measurements, Kyle E. Fitch, Chaoxun Hang, Ahmad Talaei, Timothy Garrett Jan 2021

Arctic Observations And Numerical Simulations Of Surface Wind Effects On Multi-Angle Snowflake Camera Measurements, Kyle E. Fitch, Chaoxun Hang, Ahmad Talaei, Timothy Garrett

Faculty Publications

Ground-based measurements of frozen precipitation are heavily influenced by interactions of surface winds with gauge-shield geometry. The Multi-Angle Snowflake Camera (MASC), which photographs hydrometeors in free-fall from three different angles while simultaneously measuring their fall speed, has been used in the field at multiple midlatitude and polar locations both with and without wind shielding. Here, we present an analysis of Arctic field observations – with and without a Belfort double Alter shield – and compare the results to computational fluid dynamics (CFD) simulations of the airflow and corresponding particle trajectories around the unshielded MASC. MASC-measured fall speeds compare well with …


Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing Sep 2020

Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing

Theses and Dissertations

Hyperspectral target detection promises new operational advantages, with increasing instrument spectral resolution and robust material discrimination. Resolving surface materials requires a fast and accurate accounting of atmospheric effects to increase detection accuracy while minimizing false alarms. This dissertation investigates deep learning methods constrained by the processes governing radiative transfer to efficiently perform atmospheric compensation on data collected by long-wave infrared (LWIR) hyperspectral sensors. These compensation methods depend on generative modeling techniques and permutation invariant neural network architectures to predict LWIR spectral radiometric quantities. The compensation algorithms developed in this work were examined from the perspective of target detection performance using …


Measurements Of Optical Turbulence Over 149-Km Path, Jack E. Mccrae, Santasri Bose-Pillai, Steven T. Fiorino, Aaron J. Archibald, Joel Meoak, Brannon Elmore, Thomas Kesler, Christopher A. Rice Jul 2020

Measurements Of Optical Turbulence Over 149-Km Path, Jack E. Mccrae, Santasri Bose-Pillai, Steven T. Fiorino, Aaron J. Archibald, Joel Meoak, Brannon Elmore, Thomas Kesler, Christopher A. Rice

Faculty Publications

An experiment was conducted to study turbulence along a 149-km path between the Mauna Loa and Haleakala mountain tops using digital cameras and light-emitting diode (LED) beacons. Much of the path is over the ocean, and a large portion of the path is 3 km above sea level. On the Mauna Loa side, six LED beacons were placed in a roughly linear array with pair spacings from 7 to 62 m. From the Haleakala side, a pair of cameras separated by 83.8 cm observed these beacons. Turbulence along the path induces tilts on the wavefronts, which results in displacements of …


Implications Of Four-Dimensional Weather Cubes For Improved Cloud-Free Line-Of-Sight Assessments Of Free-Space Optical Communications Link Performance, Steven T. Fiorino, Santasri Bose-Pillai, Jaclyn Schmidt, Brannon Elmore, Kevin J. Keefer Jul 2020

Implications Of Four-Dimensional Weather Cubes For Improved Cloud-Free Line-Of-Sight Assessments Of Free-Space Optical Communications Link Performance, Steven T. Fiorino, Santasri Bose-Pillai, Jaclyn Schmidt, Brannon Elmore, Kevin J. Keefer

Faculty Publications

We advance the benefits of previously reported four-dimensional (4-D) weather cubes toward the creation of high-fidelity cloud-free line-of-sight (CFLOS) beam propagation for realistic assessment of autotracked/dynamically routed free-space optical (FSO) communication datalink concepts. The weather cubes accrue parameterization of optical effects and custom atmospheric resolution through implementation of numerical weather prediction data in the Laser Environmental Effects Definition and Reference atmospheric characterization and radiative transfer code. 4-D weather cube analyses have recently been expanded to accurately assess system performance (probabilistic climatologies and performance forecasts) at any wavelength/frequency or spectral band in the absence of field tests and employment data. The …


Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: Ii. Using Time-Dependent Simulations, Mark F. Spencer Jul 2020

Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: Ii. Using Time-Dependent Simulations, Mark F. Spencer

Faculty Publications

Part II of this two-part paper uses wave-optics simulations to look at the Monte Carlo averages associated with turbulence and time-dependent thermal blooming (TDTB). The goal is to investigate turbulence thermal blooming interaction (TTBI). At wavelengths near 1 μm, TTBI increases the amount of constructive and destructive interference (i.e., scintillation) that results from high-power laser beam propagation through distributed-volume atmospheric aberrations. As a result, we use the spherical-wave Rytov number, the number of wind-clearing periods, and the distortion number to gauge the strength of the simulated turbulence and TDTB. These parameters simply greatly given propagation paths with constant atmospheric conditions. …


Turbulence Profiling Using Pupil Plane Wavefront Data Derived Fried Parameter Values For A Dynamically Ranged Rayleigh Beacon, Steven M. Zuraski, Elizabeth Beecher, Jack E. Mccrae, Steven T. Fiorino Jul 2020

Turbulence Profiling Using Pupil Plane Wavefront Data Derived Fried Parameter Values For A Dynamically Ranged Rayleigh Beacon, Steven M. Zuraski, Elizabeth Beecher, Jack E. Mccrae, Steven T. Fiorino

Faculty Publications

Long-range optical imaging applications are typically hindered by atmospheric turbulence. The effect of turbulence on an imaging system can manifest itself as an image blur effect usually quantified by the phase distortions present in the system. The blurring effect can be understood on the basis of the measured strength of atmospheric optical turbulence along the propagation path and its impacts on phase perturbation statistics within the imaging system. One method for obtaining these measurements is by the use of a dynamically ranged Rayleigh beacon system that exploits strategically varied beacon ranges along the propagation path, effectively obtaining estimates of the …


Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: I. Using Steady-State Simulations, Mark F. Spencer Jul 2020

Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: I. Using Steady-State Simulations, Mark F. Spencer

Faculty Publications

Part I of this two-part paper uses wave-optics simulations to look at the Monte Carlo averages associated with turbulence and steady-state thermal blooming (SSTB). The goal is to investigate turbulence thermal blooming interaction (TTBI). At wavelengths near 1 μm, TTBI increases the amount of constructive and destructive interference (i.e., scintillation) that results from high-power laser beam propagation through distributed-volume atmospheric aberrations. As a result, we use the spherical-wave Rytov number and the distortion number to gauge the strength of the simulated turbulence and SSTB. These parameters simplify greatly given propagation paths with constant atmospheric conditions. In addition, we use the …


Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola Apr 2020

Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola

Faculty Publications

Atmospheric compensation of long-wave infrared (LWIR) hyperspectral imagery is investigated in this article using set representations learned by a neural network. This approach relies on synthetic at-sensor radiance data derived from collected radiosondes and a diverse database of measured emissivity spectra sampled at a range of surface temperatures. The network loss function relies on LWIR radiative transfer equations to update model parameters. Atmospheric predictions are made on a set of diverse pixels extracted from the scene, without knowledge of blackbody pixels or pixel temperatures. The network architecture utilizes permutation-invariant layers to predict a set representation, similar to the work performed …


Validation Technique For Modeled Bottomside Ionospheres Via Ray Tracing, Kevin S. Burg Mar 2020

Validation Technique For Modeled Bottomside Ionospheres Via Ray Tracing, Kevin S. Burg

Theses and Dissertations

A new method for validating ionosphere models using High Frequency (HF) angle of arrival (AoA) data is presented. AoA measurements from a field campaign held at White Sands Missile Range, New Mexico, USA in January 2014 provide the actual elevation angle, azimuth and group delay results from 10 transmitter-receiver circuits. Simulated AoAs are calculated by ray tracing through the electron density profiles predicted from the ionosphere models hosted by NASA's Community Coordinated Modeling Center: IRI-2016, USU-GAIM, GITM, CTIPe, TIE-GCM, and SAMI3. Through the implementation of metrics including Mean Absolute Error, Prediction Efficiency, Correlation Coefficient, and others, we are able to …


A Method For Routine Pm2.5 Obsercation And Incorporation Into Numerical Weather Prediction, Daniel B. Jagoda Mar 2020

A Method For Routine Pm2.5 Obsercation And Incorporation Into Numerical Weather Prediction, Daniel B. Jagoda

Theses and Dissertations

Operational numerical weather prediction (NWP) simulates aerosol abundance using climatic emission inventories due to a lack of available real-time observation. An advocation to monitor aerosol number concentration with a standardized global sensor network is defended. A comparison between observations from the existing network “PurpleAir” and condensation particle counters (CPC) reveals the necessity of regulated instrumentation when measuring aerosol number concentration. NWP initialization by the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module is capable of augmentation by hourly aerosol observation. The disparity between observed in-situ particulate matter smaller than 2.5-μm in diameter (PM2.5) and Weather Research and Forecasting …