Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Learning In Short-Time Horizons With Measurable Costs, Patrick Bowen Mullen Nov 2006

Learning In Short-Time Horizons With Measurable Costs, Patrick Bowen Mullen

Theses and Dissertations

Dynamic pricing is a difficult problem for machine learning. The environment is noisy, dynamic and has a measurable cost associated with exploration that necessitates that learning be done in short-time horizons. These short-time horizons force the learning algorithms to make pricing decisions based on scarce data. In this work, various machine learning algorithms are compared in the context of dynamic pricing. These algorithms include the Kalman filter, artificial neural networks, particle swarm optimization and genetic algorithms. The majority of these algorithms have been modified to handle the pricing problem. The results show that these adaptations allow the learning algorithms to …


A Decentralized Reinforcement Learning Controller For Collaborative Driving, Luke Ng, Christopher M. Clark, Jan P. Huissoon Oct 2006

A Decentralized Reinforcement Learning Controller For Collaborative Driving, Luke Ng, Christopher M. Clark, Jan P. Huissoon

Computer Science and Software Engineering

Research in the collaborative driving domain strives to create control systems that coordinate the motion of multiple vehicles in order to navigate traffic both efficiently and safely. In this paper a novel individual vehicle controller based on reinforcement learning is introduced. This controller is capable of both lateral and longitudinal control while driving in a multi-vehicle platoon. The design and development of this controller is discussed in detail and simulation results showing learning progress and performance are presented.


Svm-Based Negative Data Mining To Binary Classification, Fuhua Jiang Aug 2006

Svm-Based Negative Data Mining To Binary Classification, Fuhua Jiang

Computer Science Dissertations

The properties of training data set such as size, distribution and the number of attributes significantly contribute to the generalization error of a learning machine. A not well-distributed data set is prone to lead to a partial overfitting model. Two approaches proposed in this dissertation for the binary classification enhance useful data information by mining negative data. First, an error driven compensating hypothesis approach is based on Support Vector Machines (SVMs) with (1+k)-iteration learning, where the base learning hypothesis is iteratively compensated k times. This approach produces a new hypothesis on the new data set in which each label is …


Particle Swarm Optimization In Dynamic Pricing, Christopher K. Monson, Patrick B. Mullen, Kevin Seppi, Sean C. Warnick Jul 2006

Particle Swarm Optimization In Dynamic Pricing, Christopher K. Monson, Patrick B. Mullen, Kevin Seppi, Sean C. Warnick

Faculty Publications

Dynamic pricing is a real-time machine learning problem with scarce prior data and a concrete learning cost. While the Kalman Filter can be employed to track hidden demand parameters and extensions to it can facilitate exploration for faster learning, the exploratory nature of Particle Swarm Optimization makes it a natural choice for the dynamic pricing problem. We compare both the Kalman Filter and existing particle swarm adaptations for dynamic and/or noisy environments with a novel approach that time-decays each particle's previous best value; this new strategy provides more graceful and effective transitions between exploitation and exploration, a necessity in the …


Temporal Data Mining In A Dynamic Feature Space, Brent K. Wenerstrom May 2006

Temporal Data Mining In A Dynamic Feature Space, Brent K. Wenerstrom

Theses and Dissertations

Many interesting real-world applications for temporal data mining are hindered by concept drift. One particular form of concept drift is characterized by changes to the underlying feature space. Seemingly little has been done to address this issue. This thesis presents FAE, an incremental ensemble approach to mining data subject to concept drift. FAE achieves better accuracies over four large datasets when compared with a similar incremental learning algorithm.


Learning Real-World Problems By Finding Correlated Basis Functions, Adam C. Drake Mar 2006

Learning Real-World Problems By Finding Correlated Basis Functions, Adam C. Drake

Theses and Dissertations

Learning algorithms based on the Fourier transform attempt to learn functions by approximating the largest coefficients of their Fourier representations. Nearly all previous work in Fourier-based learning has been in the theoretical realm, where properties of the transform have made it possible to prove many interesting learnability results. The real-world usefulness of Fourier-based methods, however, has not been thoroughly explored. This thesis explores methods for the practical application of Fourier-based learning. The primary contribution of this thesis is a new search algorithm for finding the largest coefficients of a function's Fourier representation. Although the search space is exponentially large, empirical …


Surface Realization Using A Featurized Syntactic Statistical Language Model, Thomas L. Packer Mar 2006

Surface Realization Using A Featurized Syntactic Statistical Language Model, Thomas L. Packer

Theses and Dissertations

An important challenge in natural language surface realization is the generation of grammatical sentences from incomplete sentence plans. Realization can be broken into a two-stage process consisting of an over-generating rule-based module followed by a ranker that outputs the most probable candidate sentence based on a statistical language model. Thus far, an n-gram language model has been evaluated in this context. More sophisticated syntactic knowledge is expected to improve such a ranker. In this thesis, a new language model based on featurized functional dependency syntax was developed and evaluated. Generation accuracies and cross-entropy for the new language model did not …


K X N Trust-Based Agent Reputation, Christopher Alonzo Parker Jan 2006

K X N Trust-Based Agent Reputation, Christopher Alonzo Parker

Theses and Dissertations

In this research, a multi-agent system called KMAS is presented that models an environment of intelligent, autonomous, rational, and adaptive agents that reason about trust, and adapt trust based on experience. Agents reason and adapt using a modification of the k-Nearest Neighbor algorithm called (k X n) Nearest Neighbor where k neighbors recommend reputation values for trust during each of n interactions. Reputation allows a single agent to receive recommendations about the trustworthiness of others. One goal is to present a recommendation model of trust that outperforms MAS architectures relying solely on direct agent interaction. A second goal is to …