Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Machine learning

City University of New York (CUNY)

Mathematics

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

At The Interface Of Algebra And Statistics, Tai-Danae Bradley Jun 2020

At The Interface Of Algebra And Statistics, Tai-Danae Bradley

Dissertations, Theses, and Capstone Projects

This thesis takes inspiration from quantum physics to investigate mathematical structure that lies at the interface of algebra and statistics. The starting point is a passage from classical probability theory to quantum probability theory. The quantum version of a probability distribution is a density operator, the quantum version of marginalizing is an operation called the partial trace, and the quantum version of a marginal probability distribution is a reduced density operator. Every joint probability distribution on a finite set can be modeled as a rank one density operator. By applying the partial trace, we obtain reduced density operators whose diagonals …


Gradient Estimation For Attractor Networks, Thomas Flynn Feb 2018

Gradient Estimation For Attractor Networks, Thomas Flynn

Dissertations, Theses, and Capstone Projects

It has been hypothesized that neural network models with cyclic connectivity may be more powerful than their feed-forward counterparts. This thesis investigates this hypothesis in several ways. We study the gradient estimation and optimization procedures for several variants of these networks. We show how the convergence of the gradient estimation procedures are related to the properties of the networks. Then we consider how to tune the relative rates of gradient estimation and parameter adaptation to ensure successful optimization in these models. We also derive new gradient estimators for stochastic models. First, we port the forward sensitivity analysis method to the …


Solving Algorithmic Problems In Finitely Presented Groups Via Machine Learning, Jonathan Gryak Jun 2017

Solving Algorithmic Problems In Finitely Presented Groups Via Machine Learning, Jonathan Gryak

Dissertations, Theses, and Capstone Projects

Machine learning and pattern recognition techniques have been successfully applied to algorithmic problems in free groups. In this dissertation, we seek to extend these techniques to finitely presented non-free groups, in particular to polycyclic and metabelian groups that are of interest to non-commutative cryptography.

As a prototypical example, we utilize supervised learning methods to construct classifiers that can solve the conjugacy decision problem, i.e., determine whether or not a pair of elements from a specified group are conjugate. The accuracies of classifiers created using decision trees, random forests, and N-tuple neural network models are evaluated for several non-free groups. …