Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Machine learning

Artificial Intelligence and Robotics

2021

Institution
Publication
Publication Type

Articles 1 - 30 of 58

Full-Text Articles in Physical Sciences and Mathematics

Machine Learning And Computer Vision In Solar Physics, Haodi Jiang Dec 2021

Machine Learning And Computer Vision In Solar Physics, Haodi Jiang

Dissertations

In the recent decades, the difficult task of understanding and predicting violent solar eruptions and their terrestrial impacts has become a strategic national priority, as it affects the life of human beings, including communication, transportation, the power grid, national defense, space travel, and more. This dissertation explores new machine learning and computer vision techniques to tackle this difficult task. Specifically, the dissertation addresses four interrelated problems in solar physics: magnetic flux tracking, fibril tracing, Stokes inversion and vector magnetogram generation.

First, the dissertation presents a new deep learning method, named SolarUnet, to identify and track solar magnetic flux elements in …


Regulating New Tech: Problems, Pathways, And People, Cary Coglianese Dec 2021

Regulating New Tech: Problems, Pathways, And People, Cary Coglianese

All Faculty Scholarship

New technologies bring with them many promises, but also a series of new problems. Even though these problems are new, they are not unlike the types of problems that regulators have long addressed in other contexts. The lessons from regulation in the past can thus guide regulatory efforts today. Regulators must focus on understanding the problems they seek to address and the causal pathways that lead to these problems. Then they must undertake efforts to shape the behavior of those in industry so that private sector managers focus on their technologies’ problems and take actions to interrupt the causal pathways. …


Determining States Of Movement In Humans Using Minimally Processed Eeg Signals And Various Classification Methods, Maurice Barnett Dec 2021

Determining States Of Movement In Humans Using Minimally Processed Eeg Signals And Various Classification Methods, Maurice Barnett

All Theses

Electroencephalography (EEG) is a non-invasive technique used in both clinical and research settings to record neuronal signaling in the brain. The location of an EEG signal as well as the frequencies at which its neuronal constituents fire correlate with behavioral tasks, including discrete states of motor activity. Due to the number of channels and fine temporal resolution of EEG, a dense, high-dimensional dataset is collected. Transcranial direct current stimulation (tDCS) is a treatment that has been suggested to improve motor functions of Parkinson’s disease and chronic stroke patients when stimulation occurs during a motor task. tDCS is commonly administered without …


3d Shape Understanding And Generation, Matheus Gadelha Oct 2021

3d Shape Understanding And Generation, Matheus Gadelha

Doctoral Dissertations

In recent years, Machine Learning techniques have revolutionized solutions to longstanding image-based problems, like image classification, generation, semantic segmentation, object detection and many others. However, if we want to be able to build agents that can successfully interact with the real world, those techniques need to be capable of reasoning about the world as it truly is: a tridimensional space. There are two main challenges while handling 3D information in machine learning models. First, it is not clear what is the best 3D representation. For images, convolutional neural networks (CNNs) operating on raster images yield the best results in virtually …


Statistical Potentials For Rna-Protein Interactions Optimized By Cma-Es, Takayuki Kimura, Nobuaki Yasuo, Masakazu Sekijima, Brooke Lustig Oct 2021

Statistical Potentials For Rna-Protein Interactions Optimized By Cma-Es, Takayuki Kimura, Nobuaki Yasuo, Masakazu Sekijima, Brooke Lustig

Faculty Research, Scholarly, and Creative Activity

Characterizing RNA-protein interactions remains an important endeavor, complicated by the difficulty in obtaining the relevant structures. Evaluating model structures via statistical potentials is in principle straight-forward and effective. However, given the relatively small size of the existing learning set of RNA-protein complexes optimization of such potentials continues to be problematic. Notably, interaction-based statistical potentials have problems in addressing large RNA-protein complexes. In this study, we adopted a novel strategy with covariance matrix adaptation (CMA-ES) to calculate statistical potentials, successfully identifying native docking poses.


Deep Learning Applications In Medical Bioinformatics, Ziad Omar Oct 2021

Deep Learning Applications In Medical Bioinformatics, Ziad Omar

Electronic Theses and Dissertations

After a patient’s breast cancer diagnosis, identifying breast cancer lymph node metastases is one of the most important and critical factor that is directly related to the patient’s survival. The traditional way to examine the existence of cancer cells in the breast lymph nodes is through a lymph node procedure, biopsy. The procedure process is time-consuming for the patient and the provider, costly, and lacks accuracy as not every lymph node is examined. The intent of this study is to develop an artificial neural network (ANNs) that would map genetic biomarkers to breast lymph node classes using ANNs. The neural …


Deep Fakes: The Algorithms That Create And Detect Them And The National Security Risks They Pose, Nick Dunard Sep 2021

Deep Fakes: The Algorithms That Create And Detect Them And The National Security Risks They Pose, Nick Dunard

James Madison Undergraduate Research Journal (JMURJ)

The dissemination of deep fakes for nefarious purposes poses significant national security risks to the United States, requiring an urgent development of technologies to detect their use and strategies to mitigate their effects. Deep fakes are images and videos created by or with the assistance of AI algorithms in which a person’s likeness, actions, or words have been replaced by someone else’s to deceive an audience. Often created with the help of generative adversarial networks, deep fakes can be used to blackmail, harass, exploit, and intimidate individuals and businesses; in large-scale disinformation campaigns, they can incite political tensions around the …


Artificial Intelligence In Cyber Security, University Of Maine Artificial Intelligence Initiative Sep 2021

Artificial Intelligence In Cyber Security, University Of Maine Artificial Intelligence Initiative

General University of Maine Publications

UMaine AI draws top talent and leverages a distinctive set of capabilities from the University of Maine and other collaborating institutions from across Maine and beyond, while it also recruits world-class talent from across the nation and the world. It is centered at the University of Maine, leveraging the university’s strengths across disciplines, including computing and information sciences, engineering, health and life sciences, business, education, social sciences, and more.


Cognition-Enhanced Machine Learning For Better Predictions With Limited Data, Florian Sense, Ryan Wood, Michael G. Collins, Joshua Fiechter, Aihua W. Wood, Michael Krusmark, Tiffany Jastrzembski, Christopher W. Myers Sep 2021

Cognition-Enhanced Machine Learning For Better Predictions With Limited Data, Florian Sense, Ryan Wood, Michael G. Collins, Joshua Fiechter, Aihua W. Wood, Michael Krusmark, Tiffany Jastrzembski, Christopher W. Myers

Faculty Publications

The fields of machine learning (ML) and cognitive science have developed complementary approaches to computationally modeling human behavior. ML's primary concern is maximizing prediction accuracy; cognitive science's primary concern is explaining the underlying mechanisms. Cross-talk between these disciplines is limited, likely because the tasks and goals usually differ. The domain of e-learning and knowledge acquisition constitutes a fruitful intersection for the two fields’ methodologies to be integrated because accurately tracking learning and forgetting over time and predicting future performance based on learning histories are central to developing effective, personalized learning tools. Here, we show how a state-of-the-art ML model can …


Exploiting Group Structures To Infer Social Interactions From Videos, Maksim Bolonkin Sep 2021

Exploiting Group Structures To Infer Social Interactions From Videos, Maksim Bolonkin

Dartmouth College Ph.D Dissertations

In this thesis, we consider the task of inferring the social interactions between humans by analyzing multi-modal data. Specifically, we attempt to solve some of the problems in interaction analysis, such as long-term deception detection, political deception detection, and impression prediction. In this work, we emphasize the importance of using knowledge about the group structure of the analyzed interactions. Previous works on the matter mostly neglected this aspect and analyzed a single subject at a time. Using the new Resistance dataset, collected by our collaborators, we approach the problem of long-term deception detection by designing a class of histogram-based features …


Orthogonal Inductive Matrix Completion, Antoine Ledent, Rrodrigo Alves, Marius Kloft Sep 2021

Orthogonal Inductive Matrix Completion, Antoine Ledent, Rrodrigo Alves, Marius Kloft

Research Collection School Of Computing and Information Systems

We propose orthogonal inductive matrix completion (OMIC), an interpretable approach to matrix completion based on a sum of multiple orthonormal side information terms, together with nuclear-norm regularization. The approach allows us to inject prior knowledge about the singular vectors of the ground-truth matrix. We optimize the approach by a provably converging algorithm, which optimizes all components of the model simultaneously. We study the generalization capabilities of our method in both the distribution-free setting and in the case where the sampling distribution admits uniform marginals, yielding learning guarantees that improve with the quality of the injected knowledge in both cases. As …


Characterizing Convolutional Neural Network Early-Learning And Accelerating Non-Adaptive, First-Order Methods With Localized Lagrangian Restricted Memory Level Bundling, Benjamin O. Morris Sep 2021

Characterizing Convolutional Neural Network Early-Learning And Accelerating Non-Adaptive, First-Order Methods With Localized Lagrangian Restricted Memory Level Bundling, Benjamin O. Morris

Theses and Dissertations

This dissertation studies the underlying optimization problem encountered during the early-learning stages of convolutional neural networks and introduces a training algorithm competitive with existing state-of-the-art methods. First, a Design of Experiments method is introduced to systematically measure empirical second-order Lipschitz upper bound and region size estimates for local regions of convolutional neural network loss surfaces experienced during the early-learning stages. This method demonstrates that architecture choices can significantly impact the local loss surfaces traversed during training. Next, a Design of Experiments method is used to study the effects convolutional neural network architecture hyperparameters have on different optimization routines' abilities to …


Novel Statistical Modeling Methods For Traffic Video Analysis, Hang Shi Aug 2021

Novel Statistical Modeling Methods For Traffic Video Analysis, Hang Shi

Dissertations

Video analysis is an active and rapidly expanding research area in computer vision and artificial intelligence due to its broad applications in modern society. Many methods have been proposed to analyze the videos, but many challenging factors remain untackled. In this dissertation, four statistical modeling methods are proposed to address some challenging traffic video analysis problems under adverse illumination and weather conditions.

First, a new foreground detection method is presented to detect the foreground objects in videos. A novel Global Foreground Modeling (GFM) method, which estimates a global probability density function for the foreground and applies the Bayes decision rule …


Gradient Free Sign Activation Zero One Loss Neural Networks For Adversarially Robust Classification, Yunzhe Xue Aug 2021

Gradient Free Sign Activation Zero One Loss Neural Networks For Adversarially Robust Classification, Yunzhe Xue

Dissertations

The zero-one loss function is less sensitive to outliers than convex surrogate losses such as hinge and cross-entropy. However, as a non-convex function, it has a large number of local minima, andits undifferentiable attribute makes it impossible to use backpropagation, a method widely used in training current state-of-the-art neural networks. When zero-one loss is applied to deep neural networks, the entire training process becomes challenging. On the other hand, a massive non-unique solution probably also brings different decision boundaries when optimizing zero-one loss, making it possible to fight against transferable adversarial examples, which is a common weakness in deep learning …


Towards Adversarial Robustness With 01 Lossmodels, And Novel Convolutional Neural Netsystems For Ultrasound Images, Meiyan Xie Aug 2021

Towards Adversarial Robustness With 01 Lossmodels, And Novel Convolutional Neural Netsystems For Ultrasound Images, Meiyan Xie

Dissertations

This dissertation investigates adversarial robustness with 01 loss models and a novel convolutional neural net systems for vascular ultrasound images.

In the first part, the dissertation presents stochastic coordinate descent for 01 loss and its sensitivity to adversarial attacks. The study here suggests that 01 loss may be more resilient to adversarial attacks than the hinge loss and further work is required.

In the second part, this dissertation proposes sign activation network with a novel gradient-free stochastic coordinate descent algorithm and its ensembling model. The study here finds that the ensembling model gives a high minimum distortion (as measured by …


Data-Driven Learning For Robot Physical Intelligence, Leidi Zhao Aug 2021

Data-Driven Learning For Robot Physical Intelligence, Leidi Zhao

Dissertations

The physical intelligence, which emphasizes physical capabilities such as dexterous manipulation and dynamic mobility, is essential for robots to physically coexist with humans. Much research on robot physical intelligence has achieved success on hyper robot motor capabilities, but mostly through heavily case-specific engineering. Meanwhile, in terms of robot acquiring skills in a ubiquitous manner, robot learning from human demonstration (LfD) has achieved great progress, but still has limitations handling dynamic skills and compound actions. In this dissertation, a composite learning scheme which goes beyond LfD and integrates robot learning from human definition, demonstration, and evaluation is proposed. This method tackles …


Exploratory Search With Archetype-Based Language Models, Brent D. Davis Aug 2021

Exploratory Search With Archetype-Based Language Models, Brent D. Davis

Electronic Thesis and Dissertation Repository

This dissertation explores how machine learning, natural language processing and information retrieval may assist the exploratory search task. Exploratory search is a search where the ideal outcome of the search is unknown, and thus the ideal language to use in a retrieval query to match it is unavailable. Three algorithms represent the contribution of this work. Archetype-based Modeling and Search provides a way to use previously identified archetypal documents relevant to an archetype to form a notion of similarity and find related documents that match the defined archetype. This is beneficial for exploratory search as it can generalize beyond standard …


Applying Deep Learning To The Ice Cream Vendor Problem: An Extension Of The Newsvendor Problem, Gaffar Solihu Aug 2021

Applying Deep Learning To The Ice Cream Vendor Problem: An Extension Of The Newsvendor Problem, Gaffar Solihu

Electronic Theses and Dissertations

The Newsvendor problem is a classical supply chain problem used to develop strategies for inventory optimization. The goal of the newsvendor problem is to predict the optimal order quantity of a product to meet an uncertain demand in the future, given that the demand distribution itself is known. The Ice Cream Vendor Problem extends the classical newsvendor problem to an uncertain demand with unknown distribution, albeit a distribution that is known to depend on exogenous features. The goal is thus to estimate the order quantity that minimizes the total cost when demand does not follow any known statistical distribution. The …


Modeling Of Argon Bombardment And Densification Of Low Temperature Organic Precursors Using Reactive Md Simulations And Machine Learning, Kwabena Asante-Boahen Aug 2021

Modeling Of Argon Bombardment And Densification Of Low Temperature Organic Precursors Using Reactive Md Simulations And Machine Learning, Kwabena Asante-Boahen

MSU Graduate Theses

In this study, an important aspect of the synthesis process for a-BxC:Hy was systematically modeled by utilizing the Reactive Molecular Dynamics (MD) in modeling the argon bombardment from the orthocarborane molecules as the precursor. The MD simulations are used to assess the dynamics associated with the free radicals that result from the ion bombardment. By applying the Data Mining/Machine Learning analysis into the datasets generated from the large reactive MD simulations, I was able to identify and quality the kinetics of these radicals. Overall, this approach allows for a better understanding of the overall mechanism at the atomistic level of …


Power System Stability Assessment With Supervised Machine Learning, Mirka Mandich Aug 2021

Power System Stability Assessment With Supervised Machine Learning, Mirka Mandich

Masters Theses

Power system stability assessment has become an important area of research due to the increased penetration of photovoltaics (PV) in modern power systems. This work explores how supervised machine learning can be used to assess power system stability for the Western Electricity Coordinating Council (WECC) service region as part of the Data-driven Security Assessment for the Multi-Timescale Integrated Dynamics and Scheduling for Solar (MIDAS) project. Data-driven methods offer to improve power flow scheduling through machine learning prediction, enabling better energy resource management and reducing demand on real-time time-domain simulations. Frequency, transient, and small signal stability datasets were created using the …


Diagnostic Accuracy Of Machine Learning Models To Identify Congenital Heart Disease: A Meta-Analysis, Zahra Hoodbhoy, Uswa Jiwani, Saima Sattar, Rehana A. Salam, Babar Hasan, Jai K. Das Jul 2021

Diagnostic Accuracy Of Machine Learning Models To Identify Congenital Heart Disease: A Meta-Analysis, Zahra Hoodbhoy, Uswa Jiwani, Saima Sattar, Rehana A. Salam, Babar Hasan, Jai K. Das

Department of Paediatrics and Child Health

Background: With the dearth of trained care providers to diagnose congenital heart disease (CHD) and a surge in machine learning (ML) models, this review aims to estimate the diagnostic accuracy of such models for detecting CHD.
Methods: A comprehensive literature search in the PubMed, CINAHL, Wiley Cochrane Library, and Web of Science databases was performed. Studies that reported the diagnostic ability of ML for the detection of CHD compared to the reference standard were included. Risk of bias assessment was performed using Quality Assessment for Diagnostic Accuracy Studies-2 tool. The sensitivity and specificity results from the studies were used to …


Improving Collection Understanding For Web Archives With Storytelling: Shining Light Into Dark And Stormy Archives, Shawn M. Jones Jul 2021

Improving Collection Understanding For Web Archives With Storytelling: Shining Light Into Dark And Stormy Archives, Shawn M. Jones

Computer Science Theses & Dissertations

Collections are the tools that people use to make sense of an ever-increasing number of archived web pages. As collections themselves grow, we need tools to make sense of them. Tools that work on the general web, like search engines, are not a good fit for these collections because search engines do not currently represent multiple document versions well. Web archive collections are vast, some containing hundreds of thousands of documents. Thousands of collections exist, many of which cover the same topic. Few collections include standardized metadata. Too many documents from too many collections with insufficient metadata makes collection understanding …


Methods For Detecting Floodwater On Roadways From Ground Level Images, Cem Sazara Jul 2021

Methods For Detecting Floodwater On Roadways From Ground Level Images, Cem Sazara

Computational Modeling & Simulation Engineering Theses & Dissertations

Recent research and statistics show that the frequency of flooding in the world has been increasing and impacting flood-prone communities severely. This natural disaster causes significant damages to human life and properties, inundates roads, overwhelms drainage systems, and disrupts essential services and economic activities. The focus of this dissertation is to use machine learning methods to automatically detect floodwater in images from ground level in support of the frequently impacted communities. The ground level images can be retrieved from multiple sources, including the ones that are taken by mobile phone cameras as communities record the state of their flooded streets. …


Automated Decision Making And Machine Learning: Regulatory Alternatives For Autonomous Settings, Alyssa Heminger Jun 2021

Automated Decision Making And Machine Learning: Regulatory Alternatives For Autonomous Settings, Alyssa Heminger

University Honors Theses

Given growing investment capital in research and development, accompanied by extensive literature on the subject by researchers in nearly every domain from civil engineering to legal studies, automated decision-support systems (ADM) are likely to see a place in the foreseeable future. Artificial intelligence (AI), as an automated system, can be defined as a broad range of computerized tasks designed to replicate human neural networks, store and organize large quantities of information, detect patterns, and make predictions with increasing accuracy and reliability. By itself, artificial intelligence is not quite science-fiction tropes (i.e. an uncontrollable existential threat to humanity) yet not without …


Algebraic Graph-Assisted Bidirectional Transformers For Molecular Property Prediction, Dong Chen, Kaifu Gao, Duc Duy Nguyen, Xin Chen, Yi Jiang, Guo-Wei Wei, Feng Pan Jun 2021

Algebraic Graph-Assisted Bidirectional Transformers For Molecular Property Prediction, Dong Chen, Kaifu Gao, Duc Duy Nguyen, Xin Chen, Yi Jiang, Guo-Wei Wei, Feng Pan

Mathematics Faculty Publications

The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as …


Exploring The Long Tail, Joseph H. Hajjar Jun 2021

Exploring The Long Tail, Joseph H. Hajjar

Dartmouth College Undergraduate Theses

The migration of datasets online has created a near-infinite inventory for big name retailers such as Amazon and Netflix, giving rise to recommendation systems to assist users in navigating the massive catalog. This has also allowed for the possibility of retailers storing much less popular, uncommon items which would not appear in a more traditional brick-and-mortar setting due to the cost of storage. Nevertheless, previous work has highlighted the profit potential which lies in the so-called "long tail'' of niche, unpopular items. Unfortunately, due to the limited amount of data in this subset of the inventory, recommendation systems often struggle …


Exploring The Use Of Social Media To Infer Relationships Between Demographics, Psychographics And Vaccine Hesitancy, Abhimanyu Kapur Jun 2021

Exploring The Use Of Social Media To Infer Relationships Between Demographics, Psychographics And Vaccine Hesitancy, Abhimanyu Kapur

Computer Science Senior Theses

The growing popularity of social media as a platform to obtain information and share one's opinions on various topics makes it a rich source of information for research. In this study, we aimed to develop a framework to infer relationships between demographic and psychographic characteristics of a user and their opinion on a specific narrative - in this case, their stance on taking the COVID-19 vaccine. Twitter was the chosen platform due to the large USA user base and easily available data. Demographic traits included Race, Age, Gender, and Human-vs-Organization Status. Psychographic traits included the Big Five personality traits (Conscientiousness, …


Automating Text Encapsulation Using Deep Learning, Anket Sah May 2021

Automating Text Encapsulation Using Deep Learning, Anket Sah

Master's Projects

Data is an important aspect in any form be it communication, reviews, news articles, social media data, machine or real-time data. With the emergence of Covid-19, a pandemic seen like no other in recent times, information is being poured in from all directions on the internet. At times it is overwhelming to determine which data to read and follow. Another crucial aspect is separating factual data from distorted data that is being circulated widely. The title or short description of this data can play a key role. Many times, these descriptions can deceive a user with unwanted information. The user …


Machine Learning Methods For Depression Detection Using Smri And Rs-Fmri Images, Marzieh Sadat Mousavian May 2021

Machine Learning Methods For Depression Detection Using Smri And Rs-Fmri Images, Marzieh Sadat Mousavian

LSU Doctoral Dissertations

Major Depression Disorder (MDD) is a common disease throughout the world that negatively influences people’s lives. Early diagnosis of MDD is beneficial, so detecting practical biomarkers would aid clinicians in the diagnosis of MDD. Having an automated method to find biomarkers for MDD is helpful even though it is difficult. The main aim of this research is to generate a method for detecting discriminative features for MDD diagnosis based on Magnetic Resonance Imaging (MRI) data.

In this research, representational similarity analysis provides a framework to compare distributed patterns and obtain the similarity/dissimilarity of brain regions. Regions are obtained by either …


The Search For Life: Exoplanet Detection With Deep Learning, Natasha Scannell May 2021

The Search For Life: Exoplanet Detection With Deep Learning, Natasha Scannell

Theses and Dissertations

The discovery of new exoplanets, planets outside of our solar system, is essential for increasing our understanding of the universe. Exoplanets capable of harboring life are particularly of interest. Over 600 GB of data was collected by the Kepler Space Telescope, and about 30 GB is being collected each day by the Transiting Exoplanet Survey Satellite since its launch in 2018. Traditional methods of experts examining this data manually are no longer tractable; automation is necessary to accomplish the task of vetting all of this data to identify planet candidates from astrophysical false positives.

Previous state-of-the-art models, Astronet and Exonet, …